5.2
Viscoelasticity



Viscoelascticity

e elastic solids (e.g. metals, ceramics) obey Hooke’s law: o0 = E¢

e elastic modulus is independent of time, ¢, and strain rate, de/dt (if T is not too high)

glassy
9_
10 semicrystalline
C
o
~~
‘1 Qe - rubbery
elastomeric (£ ~ 3NkT)
strong time <M, X M,
dependence in
transition zones melt
103

Temperature (or Time!)

® in contrast, polymer properties strongly influenced by 7 and de/dt, particularly at around their transitions
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Example - Silly Putty

® transiently cross-linked poly(dimethoxysiloxane) (PDMS):

elastic solid deformability liquid flow

o2t Silor
o0l o it0

boronic ester
mediated cross-links

.

short time scales “fast” strain rate long time scales

® silly putty shows different mechanical properties depending on the time-scale
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Importance of Viscoelasticity

o effect of time/frequency and its relation with temperature determine technologically relevant properties

strain, €

long-term properties
(creep, fatigue)

initial strain

time

short-term properties

(impact resistance, energy
dissipation, vibration,...)

processability

( e.g. thermoforming,
fiber drawing)

Industrial Processing
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Elastic, Viscoelastic, and Viscous Responses

® step stress tests (creep experiment) illustrating the intermediate behavior of viscoelastic materials that
IS between perfect elasticity and perfect viscous flow:

elastic solid viscoelastic liguid flow
A ge o
Q O (ge)
= © O
(Vo)

strain
strain
strain

time time time

=PFL 234



Phenomenological Description of Viscoelasticity

creep relaxation
(constant stress) (constant strain)
elastic solid elastic solid

iscoelastic material

strain
stress

viscoelastic material

viscous fluid

viscous fluid

time time

e linear viscoelasticity: Hooke’s & Newton’s law can be applied, stress-independent modulus £ = F(T, t)
(valid for small deformations)

e non-linear viscoelasticity in case of large deformations: stress-dependent £ = F(7, t, 0)
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Linear Viscoelasticity



Influence of Time on Stress and Strain

® static creep and relaxation tests to determine the viscoelastic functions for tension and shear deformation

Creep Relaxation Constant Strain Rate

load
load
load

strain
strain
strain

time time time

D= Jw="2 e =22 6= 22

0 0 €0 Y0

® the viscoelastic functions D(7) and J(#) are compliances, E(7) and G(7) are moduli

e don’t confuse with the time-independent Young’s modulus! £ = 1/D (only for Hookean solids)
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® state of stress or strain is a function of the history of all stresses applied to the material

Boltzmann’s Superposition Principle

creep step #1

strain

e,(f) = D(1)Ac,

o = Ao,

creep step #2

creep step #3

time

time

time

strain

e(t) = D()Ac, + D(t — 1) Ac, + D(t — ") Ao,

5

e generalized: €(7) =

D D(t—1,)Ao,

n=0

time

® the material keeps a “memory” of all its stresses (or deformations).
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Boltzmann’s Superposition Principle in the Continuous Limit

® for an infinite number of strain increments: Boltzmann superposition integral

creep experiment: for stress relaxation

strain
stress

time

de
dt’
dt’

o(t) = [ E(t—1)
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Dynamic Mechanical Analysis
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Deformation under Shear

® small strain experiments are conveniently carried out under shear.

h
F
shear stress: o= —
A
, S
shear strain: y:Z

shear modulus: G = —

e the higher G, the stiffer the material

material

very soft gel structures (salad dressing)
soft gel structures (coatings, paints)
viscoelastic gels (dispersions, lotions,...)
gummy bears

car tires (hard rubbers)

thermoplastic polymers

ceramics, glass

aluminum

steel

shear modulus (G)

5-10 Pa
10-50 Pa
50-5’000 Pa

10-500 kPa
10-100 MPa

0.1-2 GPa
15 - 35 GPa
28 GPa
80 GPa
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Dynamic Mechanical Measurements

® samples subjected to dynamic or oscillatory stress (or deformation), commonly under shear
(but also in tension and bending possible)

dynamic mechanical analysis (DMA) rheometry

shear or tensile deformation usually shear deformation

-

—
"~ ,,/
S y(t) = yysin(wt)
y(t) = ypsin(wt) e(t) = eysin(wt)
typical for solid samples typical for liquids

® stresses measured as function of 7 (constant w) or as function of w (constant 1)
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Periodic Deformation

® materials can be examined in their solid and liquid state by oscillatory tests

Oo

180° G(t) — GJ/ — 60Sln(a)t + 5)

Oo

| y(1) = ypsin(wt)

180°

Hookean solid viscoelastic material Newtonian fluid
5 =0° 0°<|o| <90 o =90

® parameters for oscillatory tests are usually preset in the form of a sine curve
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Storage Modulus, Loss Modulus & Loss Factor

y(1) = ypsin(wt)

o(t) = opsin(wt + 0) = oy(sin(wt)cos(0) + cos(wt)sin(o))

o(t) oy, . o) . .
—— = —(sin(wt)cos(0)) + —(cos(wi)sin(o)) = G'sin(wt) + G"cos(wt)
Y0 Y0 Y0
storage modulus: loss modulus: loss factor:
0 G /!
G’ = 2ecos(5) G" = Z2sin(5) an(8) = 2
Y0 Y0 G’

e storage modules GG': elastic portion of the viscoelastic behavior (stored deformation energy)
® |loss modulus G": viscous portion of the viscoelastic behavior (dissipated energy during viscous flow)

® |loss factor or damping factor ran(o): ratio between G” and G’ (maxima often indicate phase transitions)
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Complex Moduli

e the entire viscoelastic behavior is described by the complex shear modulus G*

oF Goei(a)t+5)
G>I< = — = :
y>I< },Oe(la)t)
aoe(i5) oo(cos(0) + 1 sin(0)) G
Y0 Y0
=G +iG”
viscoelastic solids: G’ > G” viscoelastic liquids: G” > G’

® the storage and loss moduli are called the real and imaginary parts of the complex modulus
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Simple Mechanical Models



Elastic Springs and Dashpots

elastic solids viscous liquids
reversible deformation irreversible deformation
3 i 3 ,
AN e || o
e e > P R ‘ ______ .,
= | e=2y
= 5 ’7
o time " o ly time
Hooke’s law: Newton’s law:
.0
o= Ee € = —
n

® simple mechanical models to describe elasticity (spring) or viscous flow (dashpot)
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Simple Viscoelastic Models: Linear Combinations of Dashpots & Elastic Springs

elastic solids viscous liquids
B "
Hooke’s law: o, € ‘ . € Newton’s law:
o, € o, € PRGN IR -
VAW 0 = Ec ‘ é=—
i
Maxwell model Voigt model Zener models (standard linear solid)

=PrL Voigt model: see Exercise 248
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Maxwell Model

® for a relaxation experiment using an elastic spring and dashpot combined in series:

E, 61 ;7’ 62
MWL
|
d€ dGl d€2 1 dG O
_— _|_ —_— = ' — O
dt dt dt E dt
d E £
o Zd - ) = ——I[tT,
o H
O = 006(_#7) with 7 = 1
E

E(7) = o _ @e(—t/f) — Ee (=)
€0 €0

stress

]

0

€ = €; + €, = €, = constant
(for a relaxation experiment)

O .
time

® reasonable qualitative description of stress relaxation by the relaxation time 7
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Maxwell Behavior under Dynamic Deformation

: : : : : - de™ .
e relaxation dynamics under sinusoidal deformation: e* = g eV —= iwe eV
[
® for the stress under continuous deformation follows:
t ¥ [ :
[—1 . S
oF = J E(t—1t)——dt' = J Ee = eOla)e(’“” \dt’ see Slide 238 and 239
— 0 dt — 00
Eiwe ' Eiwe Eia)eO(l — W) Eiey(wt — i(w7)?)
_ 0 | o tiot) |1 0 it _ T ol — 0 it
I - . - 1 - 1 2
?+la) ?+la) —2+602 + (07)
5

® the complex modulus and loss factor are then given by:

o*  Ei(wt — i(w71)?) E(w7)? 1Ewt , E”
E* = — = = | =F +iE" tan(o) =
e* 1 + (w7)? 1 +(wr)? 1+ (wr)? E' ot
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Modelling Rheology Curves

® for the complex modulus it follows: 10—
I liquid-like
10°
c* Eiw -
— l?>X< — —* — " 10_1
€ = + 1 ?
8
- -2
) 10
L E(w7)? 1IEwt >
= E' +IE" = | o
1 + (w7)> 1+ (w7)? 10°- ]

solid-like |

lllll

10~ 10° 10° 10° 10°
T

® the relaxation time characterizes the transition from liquid-like to solid-like behavior.

® universal proportionality of £’ and £ to the frequency in the terminal regime(w < 7)
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Experimental Validation

® Maxwell behavior is often encountered in temporary networks from small molecules (due to the
formation of hydrogen-bonds, for example) with a single relaxation time.

0 H | ' 9 H
20 H O 240 H O 20

o
~

MeOH

o
o

G'(w1)/ Go. G (wr)/ Go

o
o

107°%
010

U1

“PFL Rheol. Acta 2012, 51, 89-96. 252
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Limitations

Maxwell behavior real polymers

E/
E//

E
tan(o)
E

rubbery
plateau

—

\

glass

transition

log(w)

® the Maxwell model is too simple to account for the behaviour of real polymers

tan(o)

® this is also the case for the Voigt model (parallel arrangement of spring and dashpot) (see Exercise)



Maxwell vs. Voigt Model

creep experiment relaxation experiment
(constant stress o) (constant strain ¢,)
Voigt
E= A
(4°] Q
— —
(Vo) (V)
Ee,
Maxwell

00 60

E E

° O °
time time

=Pr-L See corresponding Exercise for details 254



Three Element models

EA e,

® the Zener model:

E" ¢
— VPV ey e — ¥ = g pli0)
7, 6 Voigt model
ArB B
® we use: EO — EB Eoo — E°E 75 = ;/](EO Eoo)
EA+ EB E?
® after some calculations, we find:
E.— F E.—E T (E — Eoo)
E'=Ey———— E'= pr— 1an(8) = —2
1 + (w75)? 1 + (w75)? V EoEs (1 + (075)?)
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Basic Mechanical Behavior

Zener model

real polymers

E, E’
E//
EOO
D
SN = S
S

|
—

rubbery
plateau

\

glass
transition

log(w) 1

T

e [ always shows a peak at the glass transition.

log(w)

o L'tends towards E, for < 1/75and takes the value of the Maxwell model for E* = 0

tan(o)



Generalised Voigt-Maxwell Model

® relaxation time distribution based on more accurate models from multiple elements:

El’ 62 E29 63 En, €n

_ 1)
Yy - . E0=E.+ Y Ee
1

M H» Hy

® for continuous conditions, we get the

relation to a relaxation time spectrum H(7): ) 0 J_OO (7) ‘

E* - E 1
® Cole-Cole equation as another empirical equation: Y = ,
E.,—Ey, e+ (iwt)f
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Generalised Voigt-Maxwell Model for Dynamic Behavior

G(t)—ZGe G ~
/
—/

N

N e S
G/(f) = i G (7)) gl .m-
= 2T 7] 7 7 77 |
1
W1 2 term 1
G = Z G "1+ (wr;)? |

w[s™!]
e at the lowest frequency, the behavior is dominated by the longest relaxation time

e G, and 7 are empirical parameters with often unclear physical interpretation
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Time-Temperature Equivalence



Time-Temperature Equivalence

e qualitatively similar behavior of £, when temperature or time are increased, or frequency is decreased

10°- 10°- 10°-
S S S
(ol (o (o
:106_ :’]06_ 3106_
103 103 103
temperature log(time) log(frequency)

® is it possible to relate the time (or frequency) and temperature in a more concrete way?
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Time-Temperature Superposition

e measurements of E’ as function of frequency at several different temperatures

master curve for I' =1,
T//

poTy/p,T,E’
I

log(w) log(w)

e after correction for p7, superimposed data by horizontal displacements along log(w) axis

® this allows to cover the behavior at frequency ranges that are experimentally inaccessible
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Williams-Landel-Ferry (WLF) Equation

® the displacement factors follow the empirical WLF equation:

a)l"
)// log(ay) = log(w,) — log(w) = 10g<;)
log(a(T,) >

E: loa(a(T))) COg(a ) = CI(T_T'”)\
oo\wd > —

~

Q

< log(a(T3))
T, / for T, = T,
< log(a(T)))

' // . o) 17.44(T — T.)

51.6+7T—T.

log(w)

e using T as the reference temperature, C; and C, adopt universal values
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Interpretation by the Free Volume Theory

® assumption: one or more relaxation times at temperatures close to T;

1% o1
® free Volume Theory: (T) = Togv_?f — TOeTA— To see Slide 137

N Ag—]
o let TO — Tg —A, T(T) e TOeA+T_Tg, T(Tg) e Toe A3

O a T, (1) l Ine(T) — Ine(T) N L Ag—]
We Saw. — — e — InT _ Int _
Lo (T T CTA+T-T, A
—1A -1
lna _ A AOC (T — Tg) compare Wlth the lOg(Cl ) _ Cl(T — Tr)
T A+T— Tg WLF equation: T C,+T—T.
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Implications and Limitations of the WLF Equation

the range of frequencies or time accessible by experiments is often limited and can be extended

accessed using the WLF approach (very useful to predict creep behavior).

restricted approximately to a temperature range Tg <I'< Tg + 350 K

often deviations from the “universal” constants

WLF does not apply to non-linear behavior (large deformations)

justified only, if it is applicable to all experimental quantities at a time (£', £, tan(o))
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Learning Outcome

® polymers are viscoelastic materials, their mechanical behaviour is highly sensitive to the timescale

of the measurement.

® linear viscoelasticity may be applied when the deformations are small, allowing the application of

simple models for the time dependent behaviour.

® time-temperature equivalence is a qualitative feature of the behaviour of polymeric materials. It
is invoked to justify the practice of time-temperature superposition, which can be used to greatly

extend the time or frequency range of measurements.
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