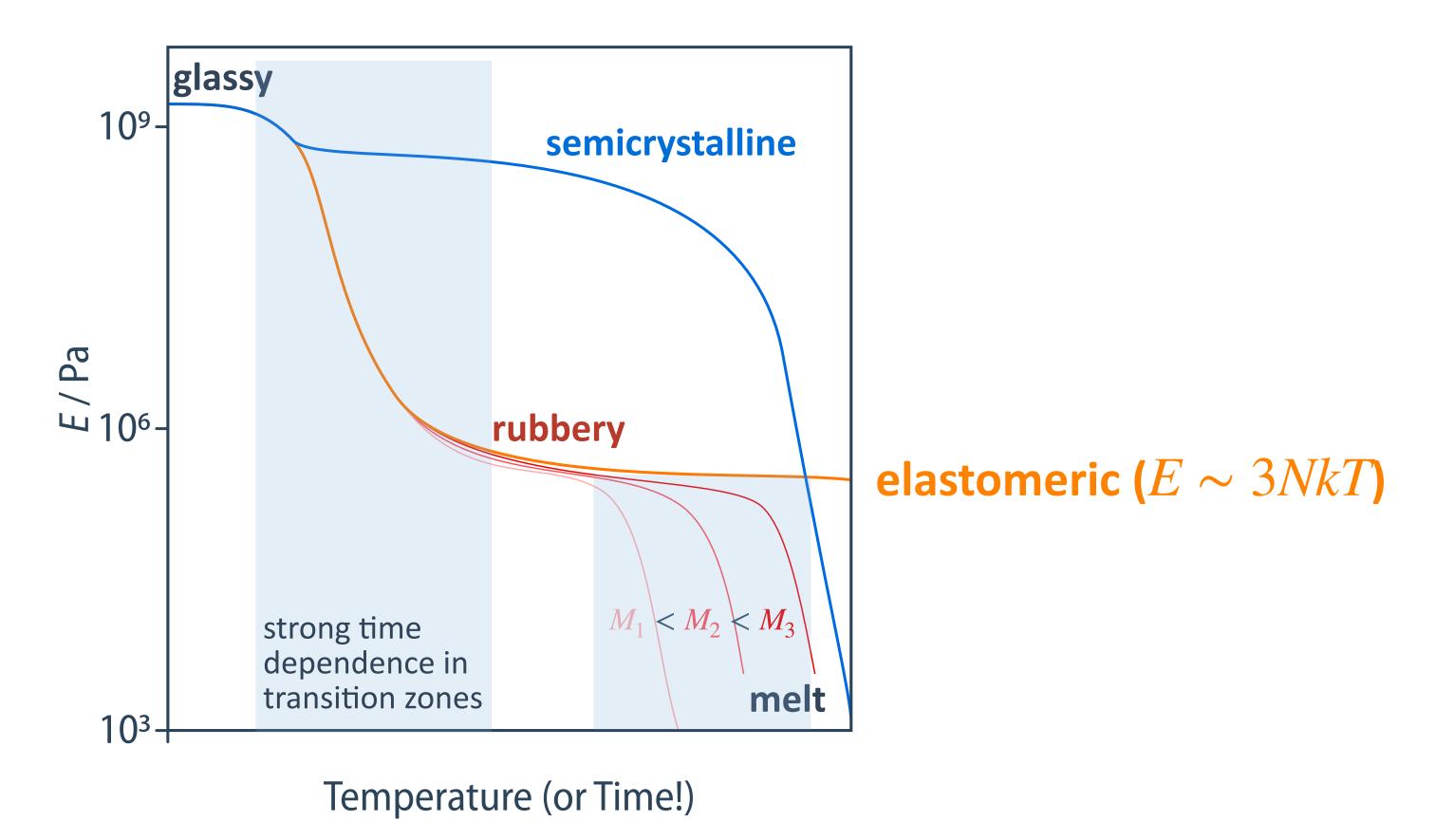
5.2 Viscoelasticity

Viscoelascticity

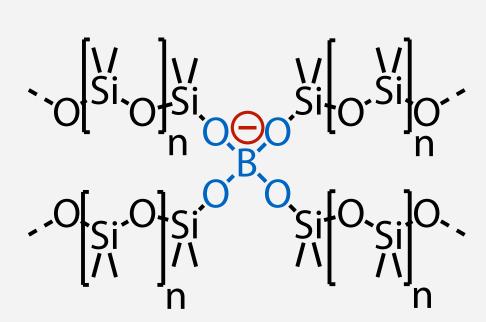
- ullet elastic solids (e.g. metals, ceramics) obey Hooke's law: $\sigma=E\epsilon$
- elastic modulus is independent of time, t, and strain rate, $d\epsilon/dt$ (if T is not too high)



ullet in contrast, polymer properties strongly influenced by t and $d\epsilon/dt$, particularly at around their transitions

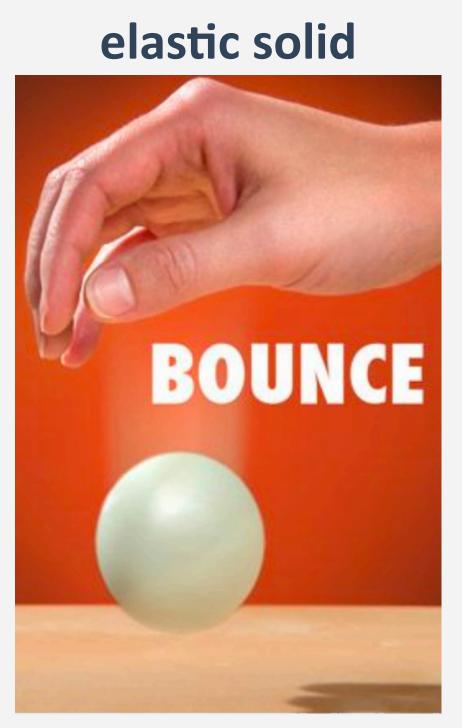
Example - Silly Putty

transiently cross-linked poly(dimethoxysiloxane) (PDMS):

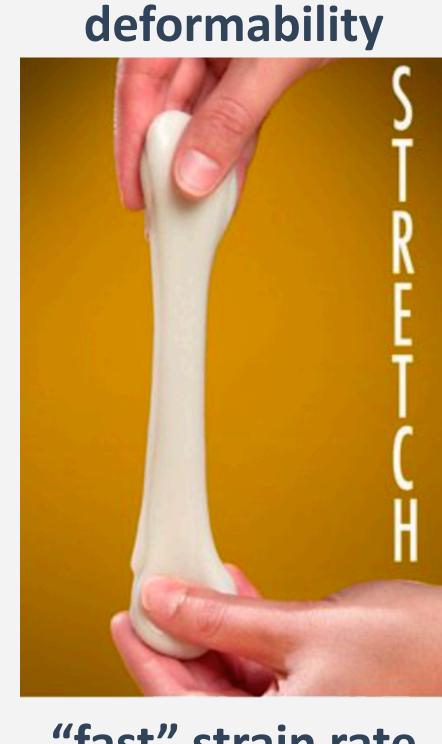


mediated cross-links

boronic ester



short time scales



"fast" strain rate

liquid flow

long time scales

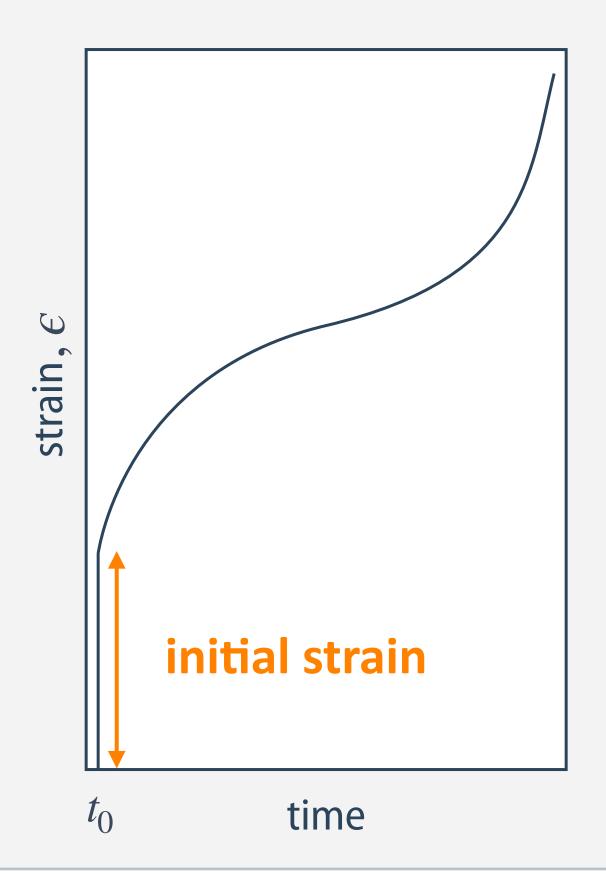
• silly putty shows different mechanical properties depending on the time-scale

Importance of Viscoelasticity

• effect of time/frequency and its relation with temperature determine technologically relevant properties

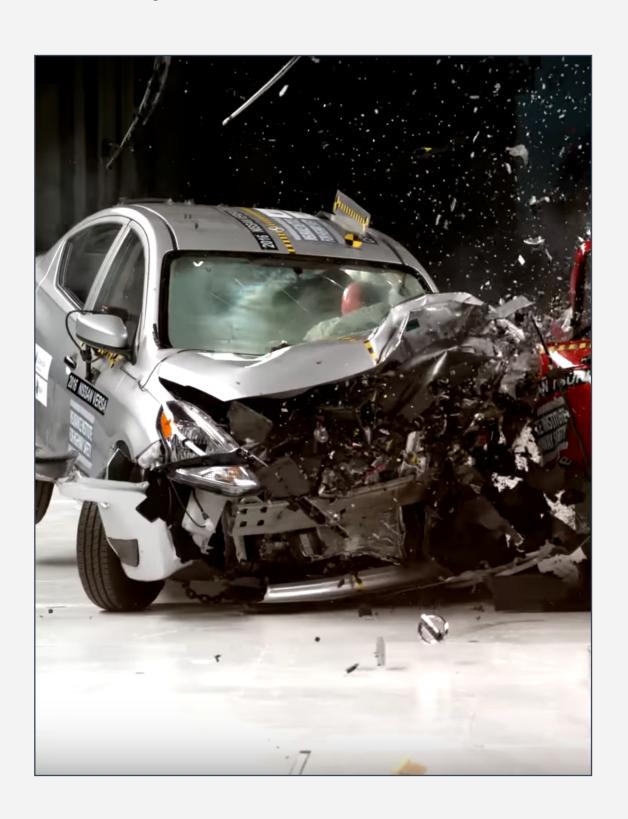
long-term properties

(creep, fatigue)



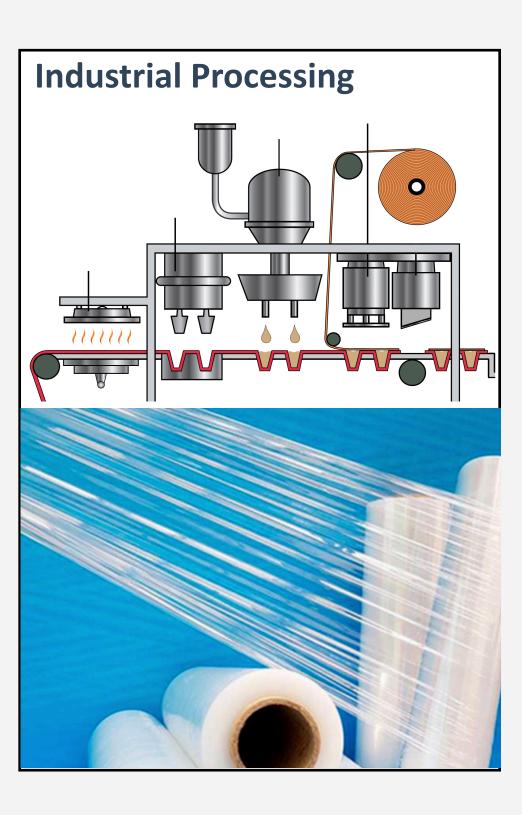
short-term properties

(impact resistance, energy dissipation, vibration,...)



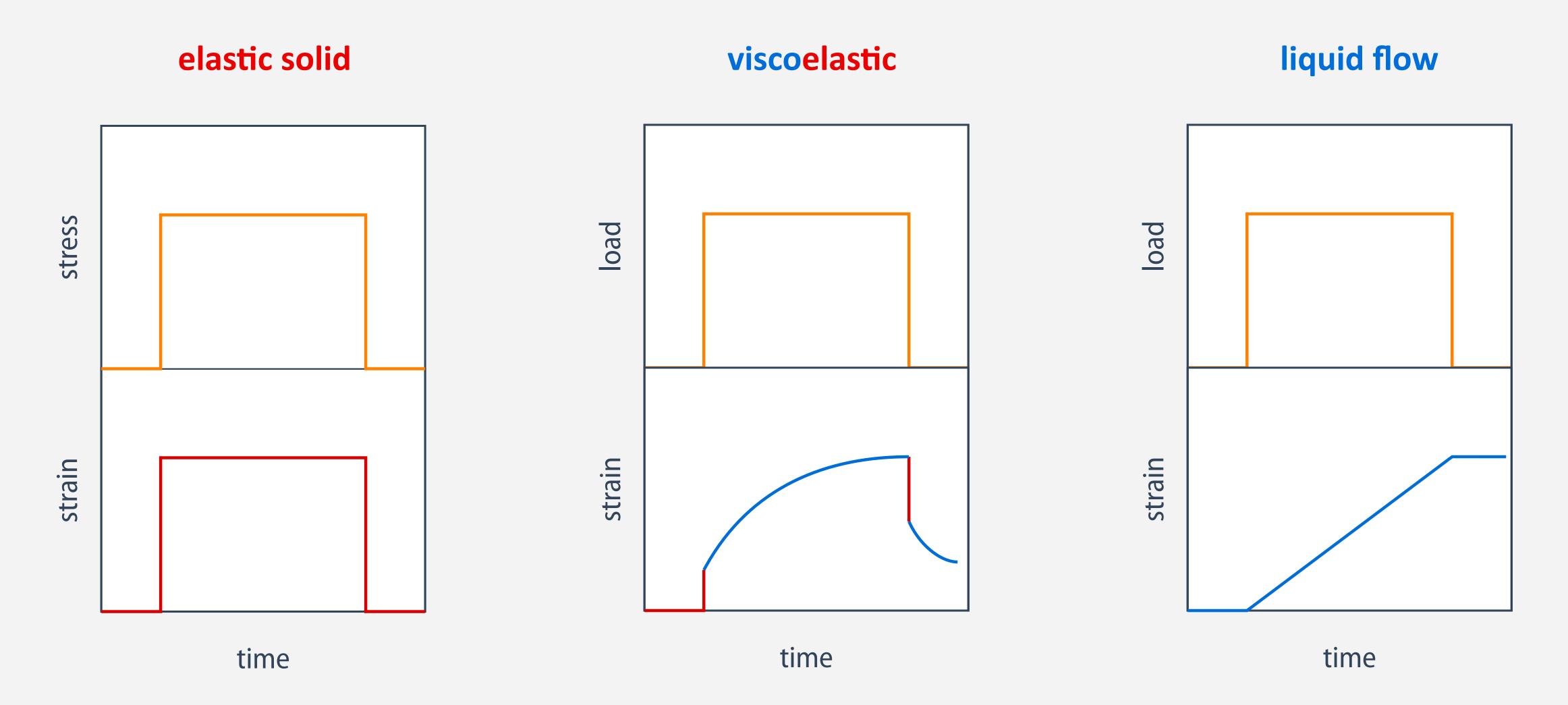
processability

(e.g. thermoforming, fiber drawing)

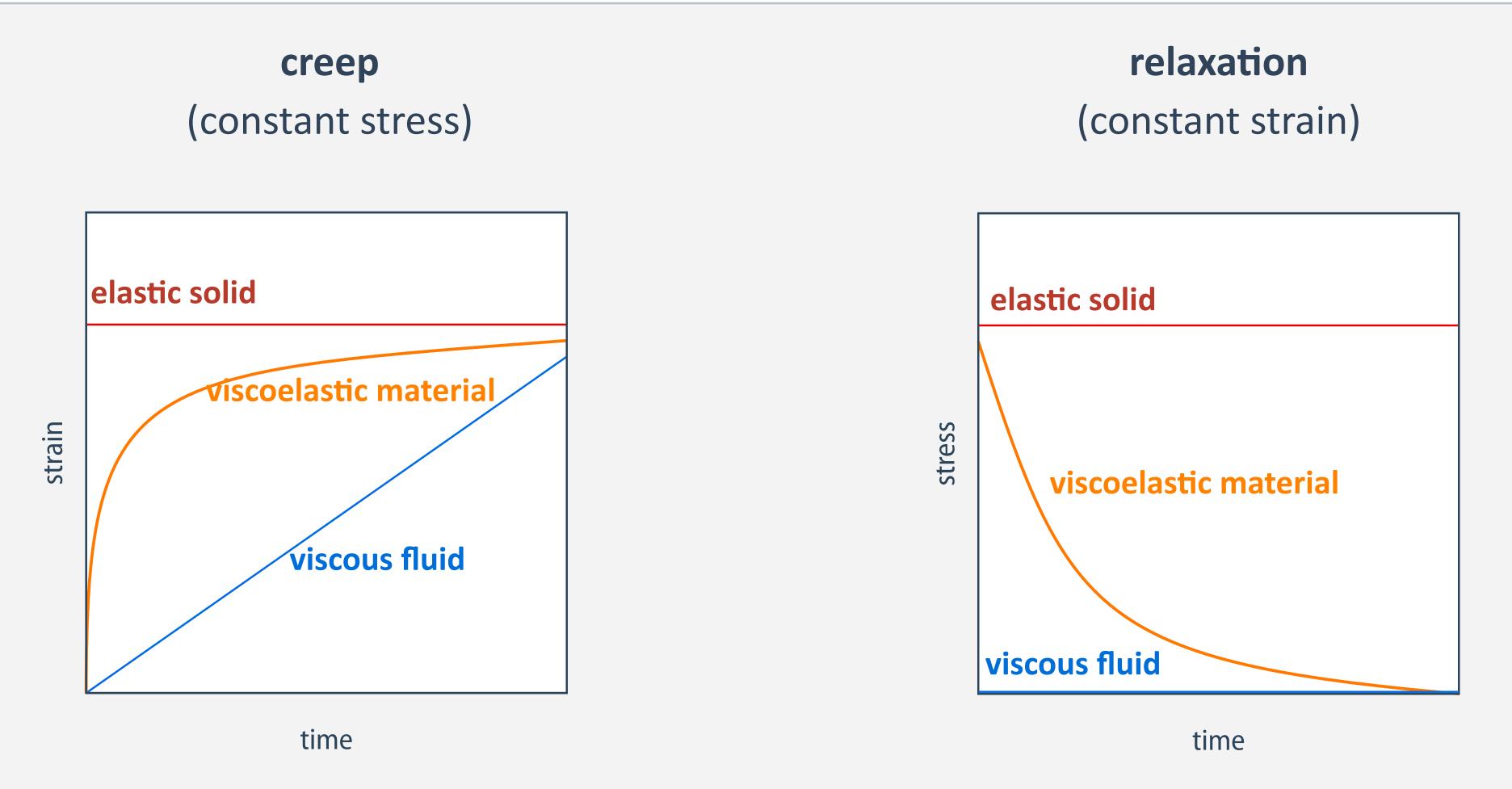


Elastic, Viscoelastic, and Viscous Responses

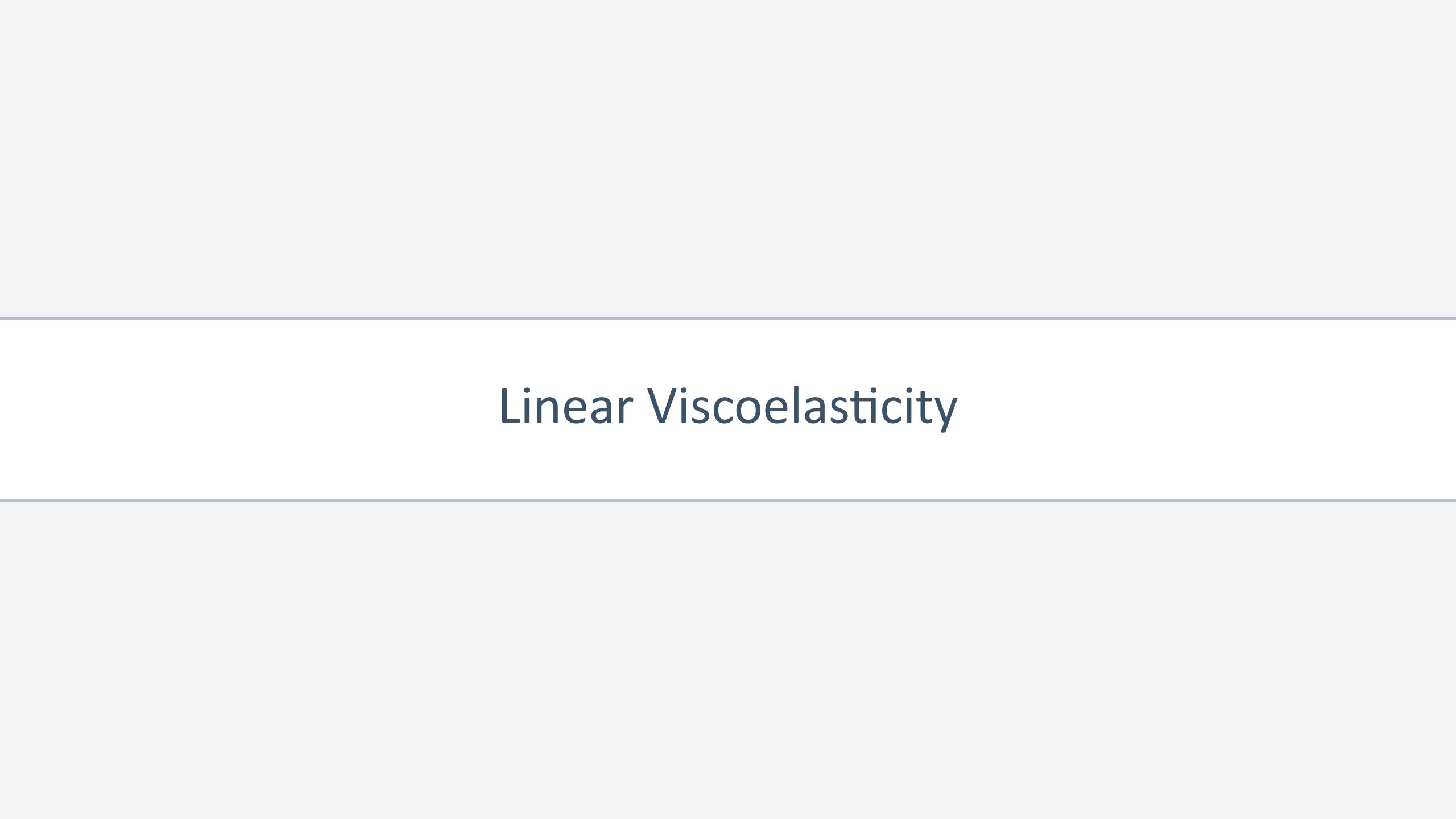
• step stress tests (creep experiment) illustrating the intermediate behavior of viscoelastic materials that is between perfect elasticity and perfect viscous flow:



Phenomenological Description of Viscoelasticity

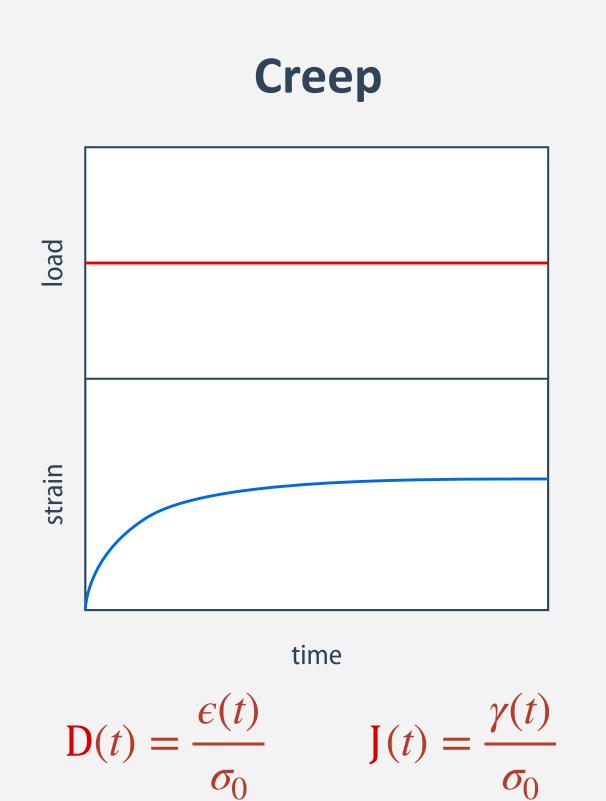


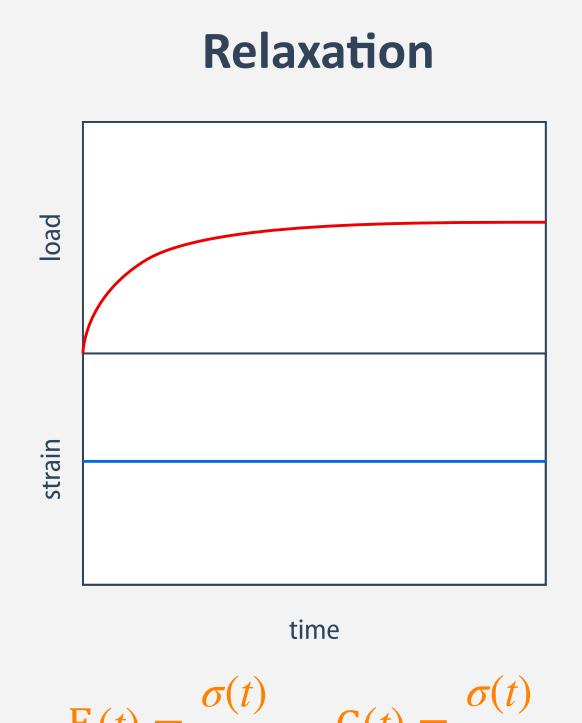
- linear viscoelasticity: Hooke's & Newton's law can be applied, stress-independent modulus E=F(T,t) (valid for small deformations)
- non-linear viscoelasticity in case of large deformations: stress-dependent $E = F(T, t, \sigma)$

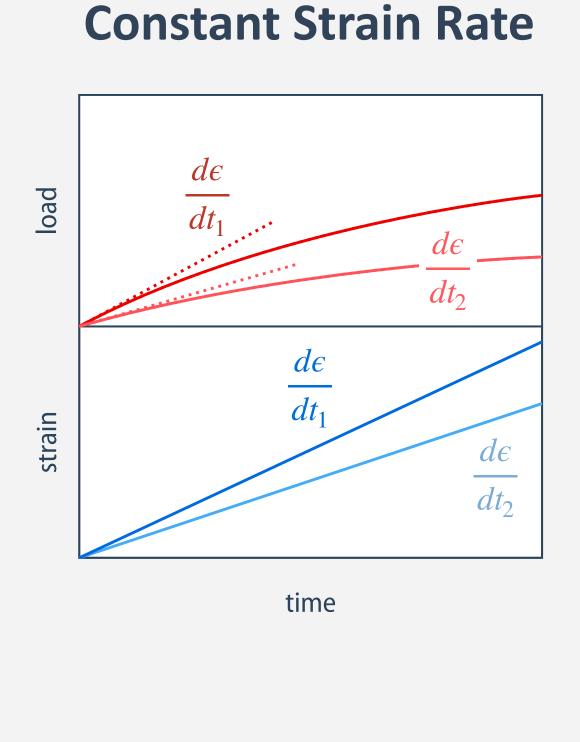


Influence of Time on Stress and Strain

• static creep and relaxation tests to determine the viscoelastic functions for tension and shear deformation



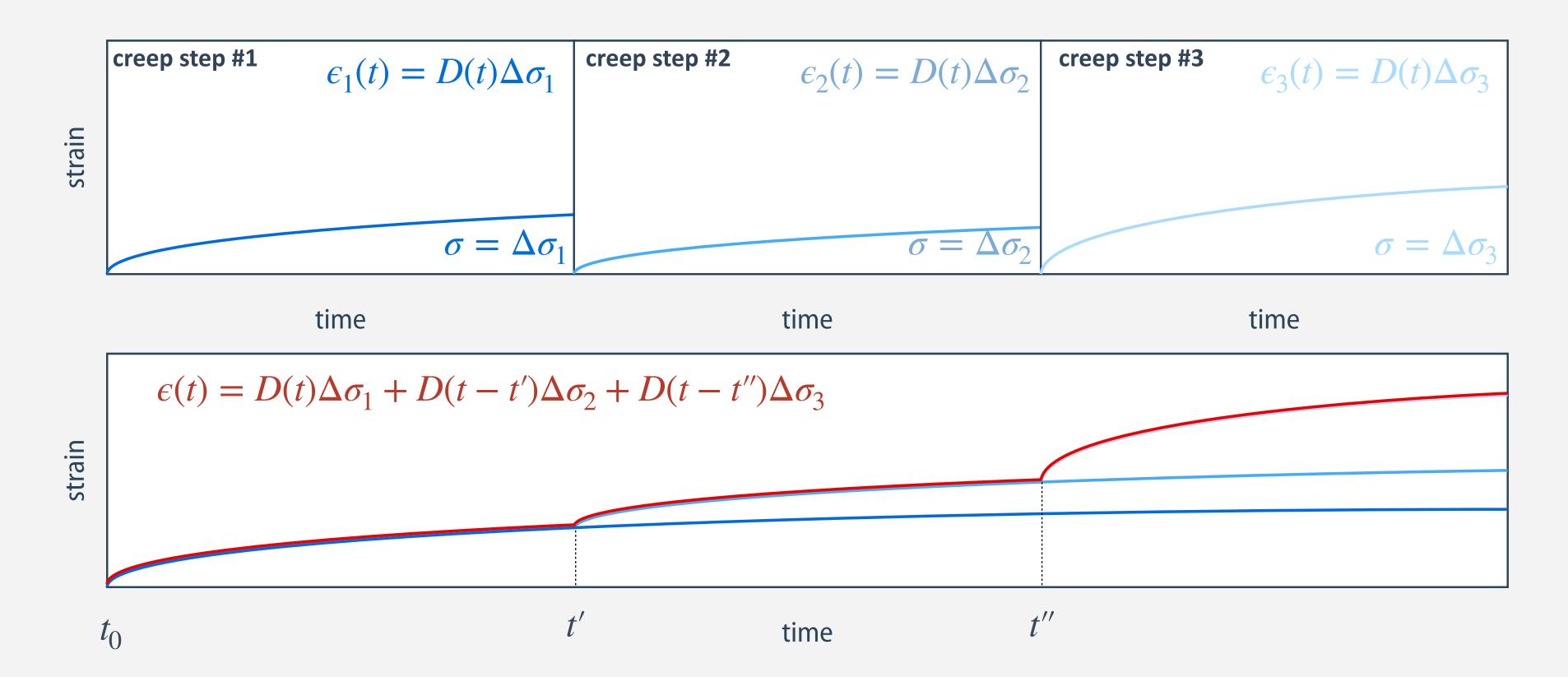




- the viscoelastic functions $\mathrm{D}(t)$ and $\mathrm{J}(t)$ are compliances, $\mathrm{E}(t)$ and $\mathrm{G}(t)$ are moduli
- don't confuse with the time-independent Young's modulus! E=1/D (only for Hookean solids)

Boltzmann's Superposition Principle

• state of stress or strain is a function of the history of all stresses applied to the material

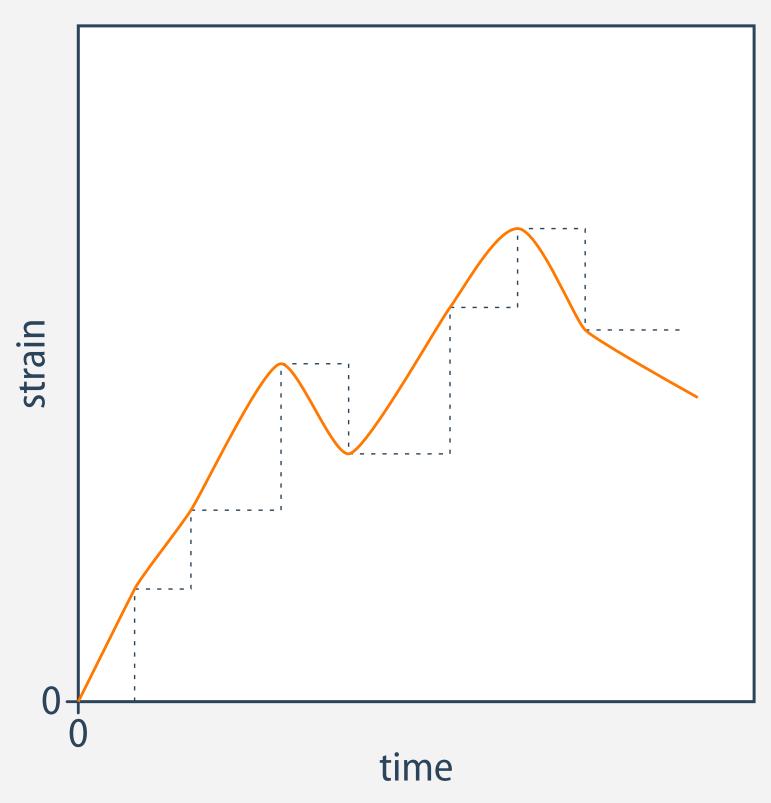


- generalized: $\epsilon(t) = \sum_{n=0}^{\infty} D(t-t_n) \Delta \sigma_n$
- the material keeps a "memory" of all its stresses (or deformations).

Boltzmann's Superposition Principle in the Continuous Limit

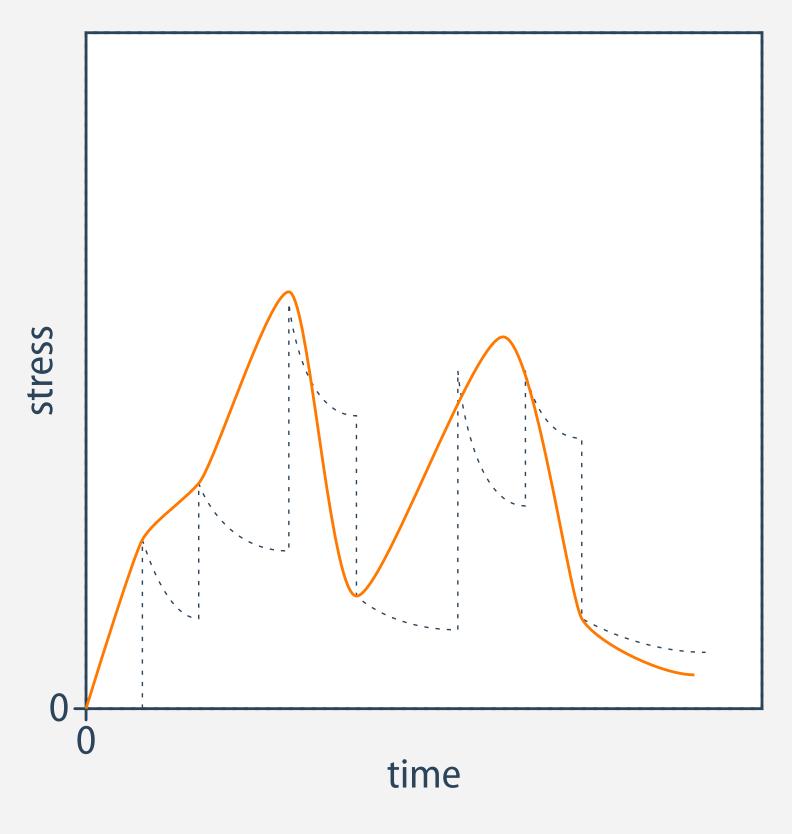
• for an infinite number of strain increments: Boltzmann superposition integral

creep experiment:



$$\epsilon(t) = \int_{-\infty}^{t} D(t - t') \frac{d\sigma}{dt'} dt'$$

for stress relaxation

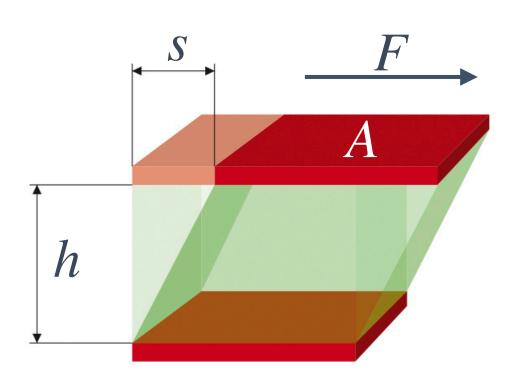


$$\sigma(t) = \int_{-\infty}^{t} E(t - t') \frac{d\epsilon}{dt'} dt'$$

Dynamic Mechanical Analysis

Deformation under Shear

• small strain experiments are conveniently carried out under shear.



shear stress:
$$\sigma = \frac{F}{A}$$

shear strain:
$$\gamma = \frac{s}{h}$$

shear modulus:
$$G = \frac{\sigma}{\gamma}$$

material	shear modulus (<i>G</i>)
very soft gel structures (salad dressing)	5-10 Pa
soft gel structures (coatings, paints)	10-50 Pa
viscoelastic gels (dispersions, lotions,)	50-5'000 Pa
gummy bears	10-500 kPa
car tires (hard rubbers)	10-100 MPa
thermoplastic polymers	0.1-2 GPa
ceramics, glass	15 - 35 GPa
aluminum	28 GPa
steel	80 GPa

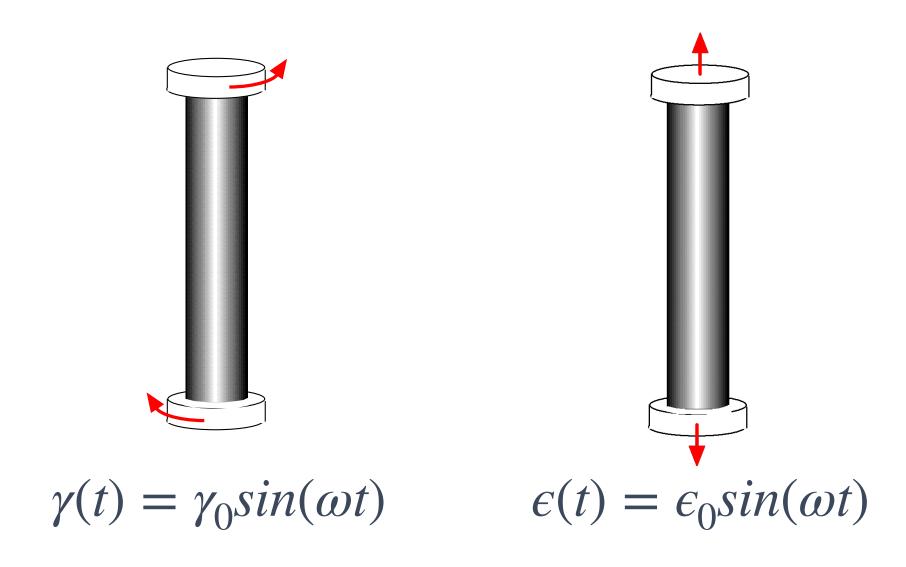
ullet the higher G, the stiffer the material

Dynamic Mechanical Measurements

• samples subjected to dynamic or oscillatory stress (or deformation), commonly under shear (but also in tension and bending possible)

dynamic mechanical analysis (DMA)

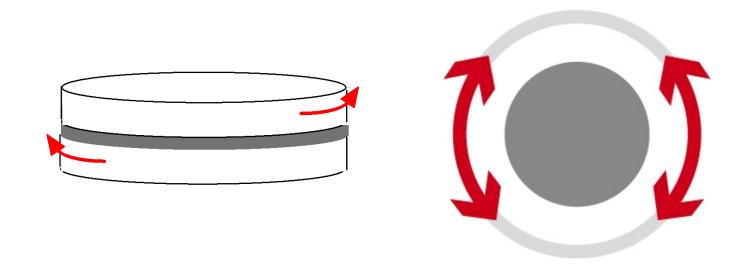
shear or tensile deformation



typical for solid samples

rheometry

usually shear deformation



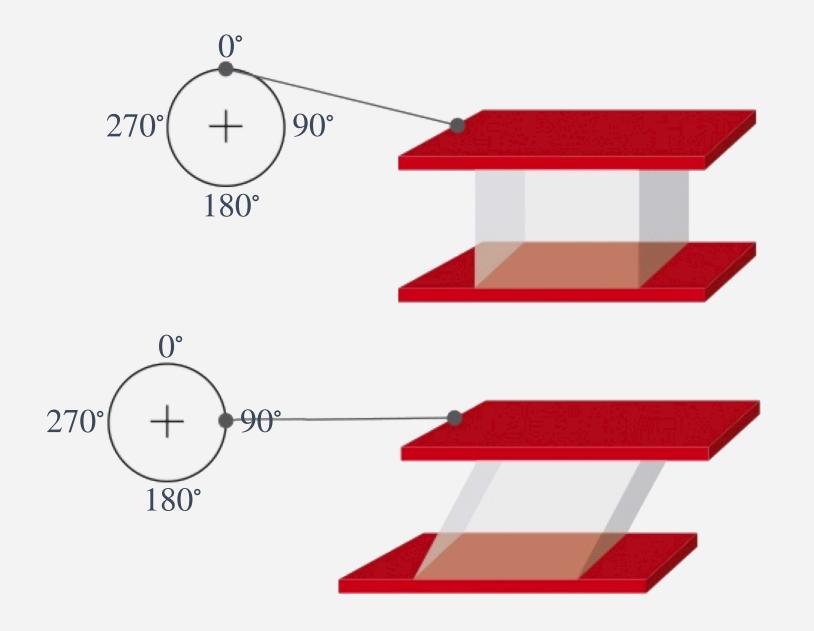
$$\gamma(t) = \gamma_0 sin(\omega t)$$

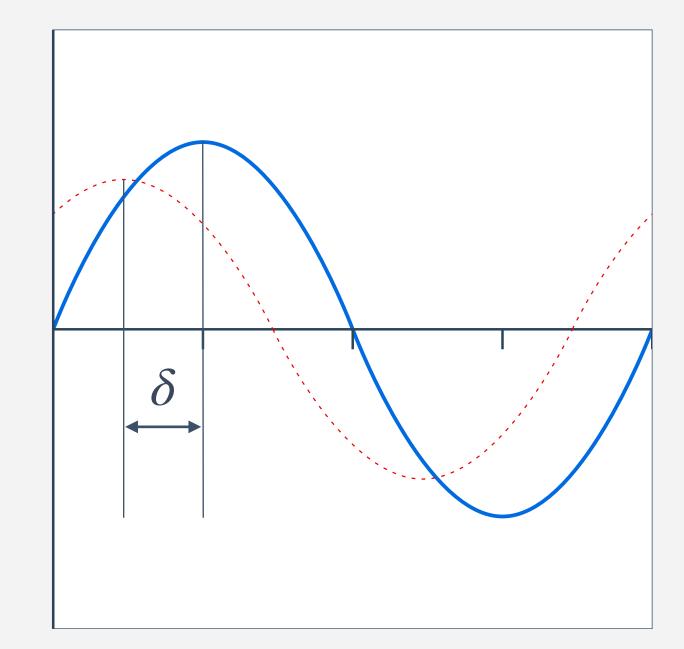
typical for liquids

ullet stresses measured as function of T (constant ω) or as function of ω (constant T)

Periodic Deformation

• materials can be examined in their solid and liquid state by oscillatory tests





$$\sigma(t) = G\gamma = \sigma_0 sin(\omega t + \delta)$$

$$\gamma(t) = \gamma_0 sin(\omega t)$$

Hookean solid

$$\delta = 0^{\circ}$$

viscoelastic material

$$0^{\circ} < |\delta| < 90^{\circ}$$

Newtonian fluid

$$\delta = 90^{\circ}$$

parameters for oscillatory tests are usually preset in the form of a sine curve

Storage Modulus, Loss Modulus & Loss Factor

$$\begin{split} \gamma(t) &= \gamma_0 sin(\omega t) \\ \sigma(t) &= \sigma_0 sin(\omega t + \delta) = \sigma_0 (sin(\omega t)cos(\delta) + cos(\omega t)sin(\delta)) \\ \frac{\sigma(t)}{\gamma_0} &= \frac{\sigma_0}{\gamma_0} (sin(\omega t)cos(\delta)) + \frac{\sigma_0}{\gamma_0} (cos(\omega t)sin(\delta)) &\equiv G'sin(\omega t) + G''cos(\omega t) \end{split}$$

storage modulus:

$$G' = \frac{\sigma_0}{\gamma_0} cos(\delta)$$

loss modulus:

$$G'' = \frac{\sigma_0}{\gamma_0} sin(\delta)$$

loss factor:

$$tan(\delta) = \frac{G''}{G'}$$

- storage modules G': elastic portion of the viscoelastic behavior (stored deformation energy)
- loss modulus G'': viscous portion of the viscoelastic behavior (dissipated energy during viscous flow)
- loss factor or damping factor $tan(\delta)$: ratio between G'' and G' (maxima often indicate phase transitions)

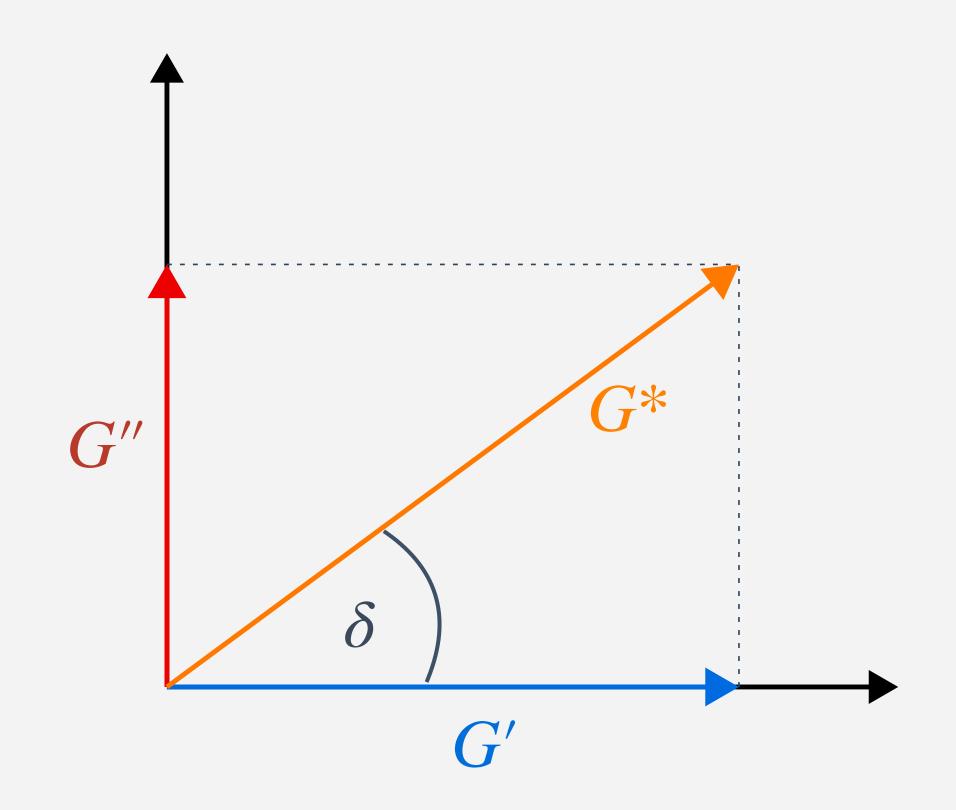
Complex Moduli

ullet the entire viscoelastic behavior is described by the complex shear modulus G^*

$$G^* = \frac{\sigma^*}{\gamma^*} = \frac{\sigma_0 e^{i(\omega t + \delta)}}{\gamma_0 e^{(i\omega t)}}$$

$$= \frac{\sigma_0 e^{(i\delta)}}{\gamma_0} = \frac{\sigma_0 (\cos(\delta) + i \sin(\delta))}{\gamma_0}$$

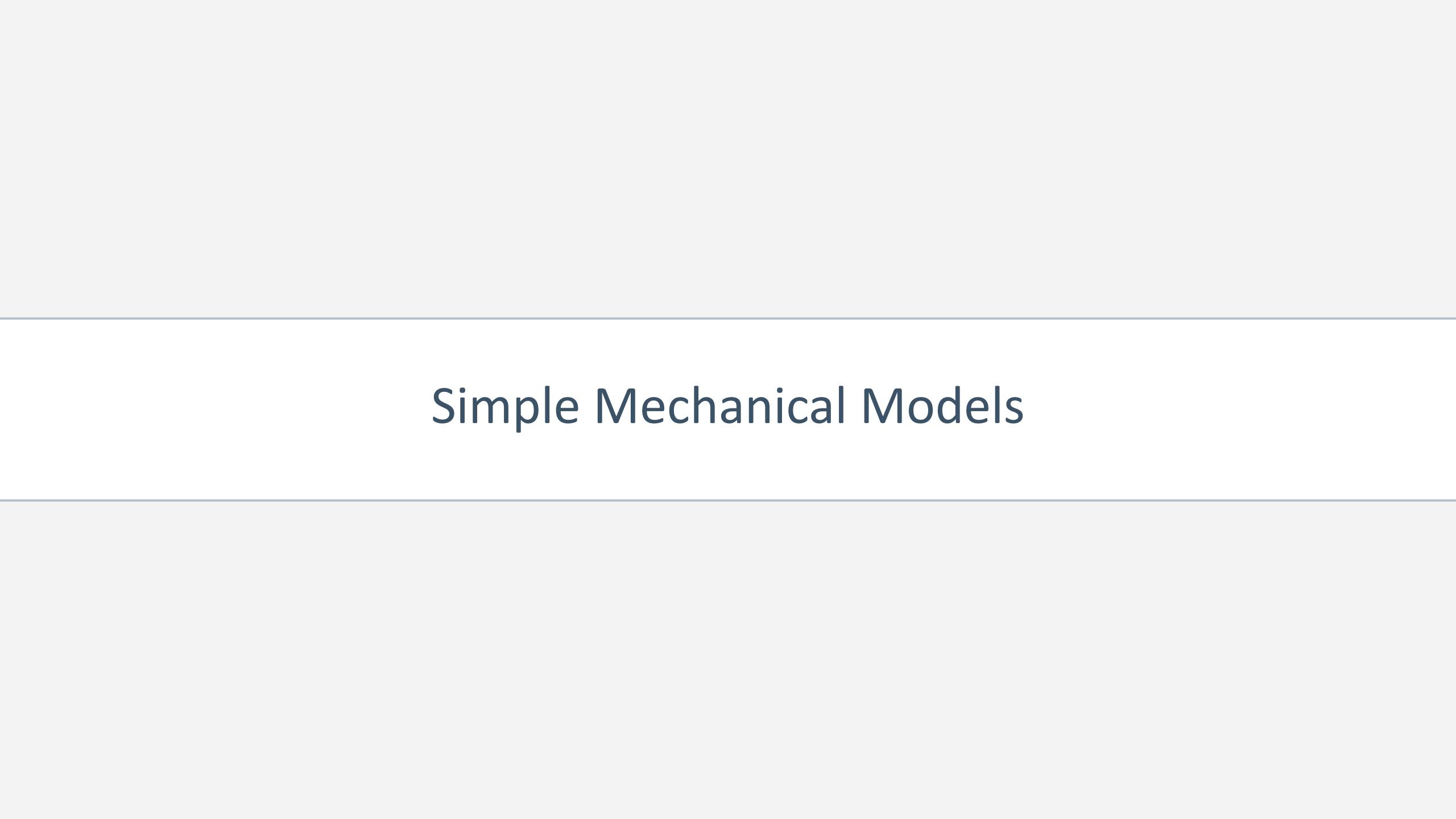
$$= G' + iG''$$



viscoelastic solids: G' > G''

viscoelastic liquids: G'' > G'

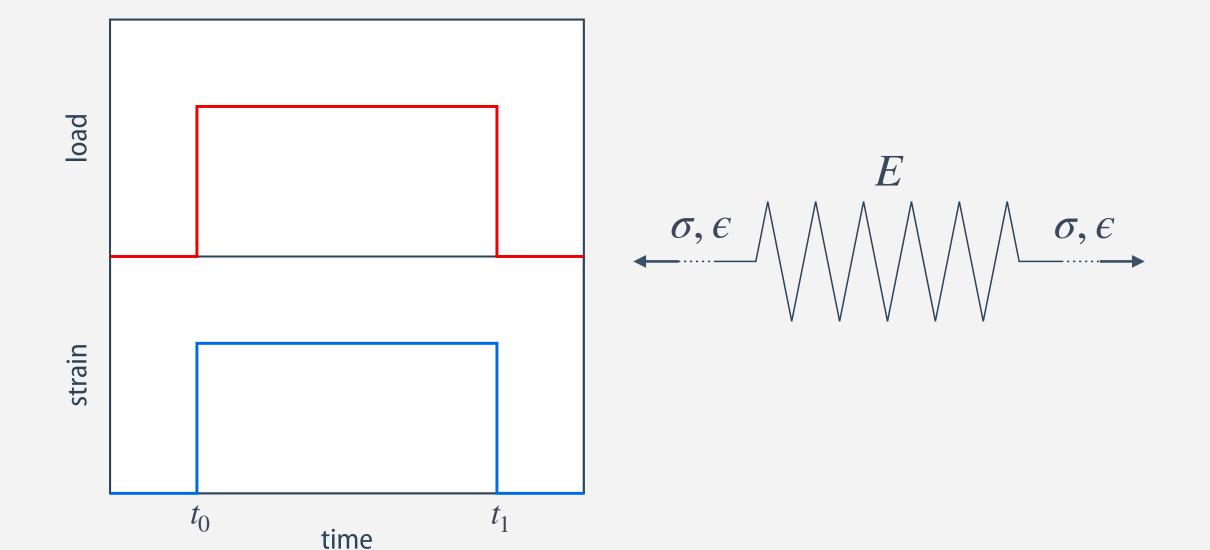
• the storage and loss moduli are called the real and imaginary parts of the complex modulus



Elastic Springs and Dashpots

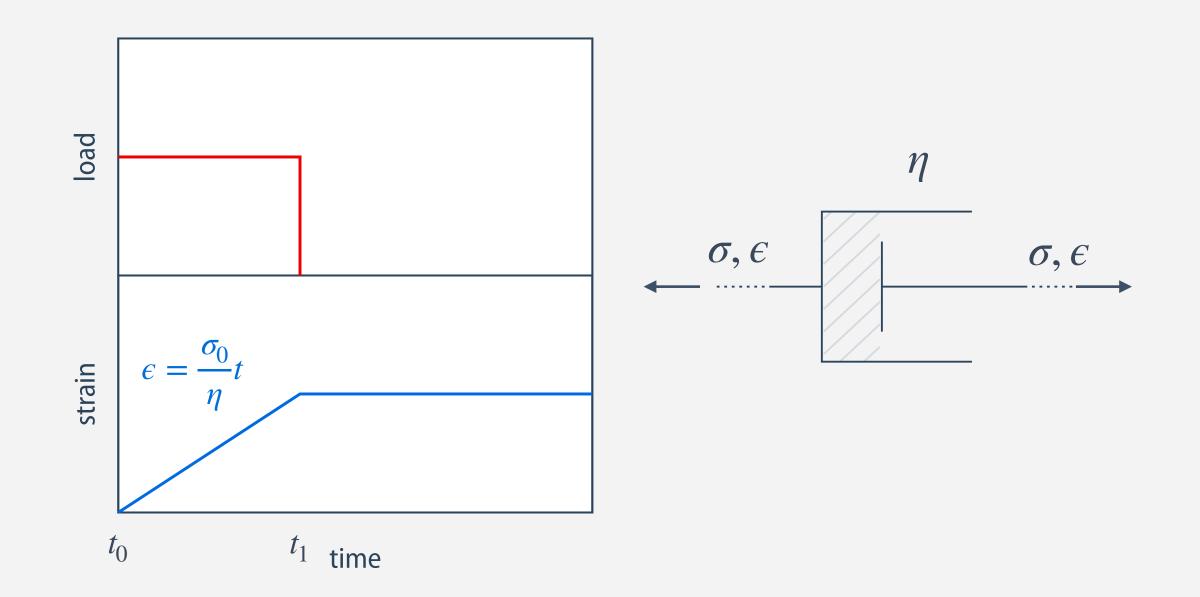
elastic solids

reversible deformation



viscous liquids

irreversible deformation



Hooke's law:

$$\sigma = E\epsilon$$

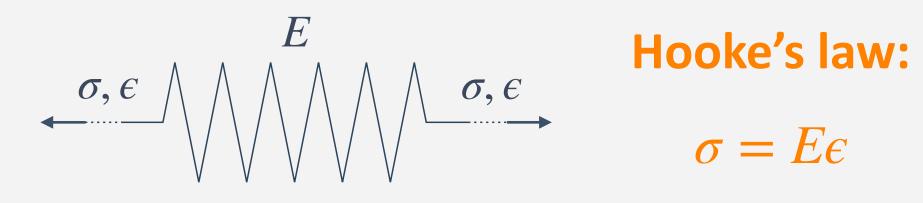
Newton's law:

$$\dot{\epsilon} = \frac{\sigma}{\eta}$$

• simple mechanical models to describe elasticity (spring) or viscous flow (dashpot)

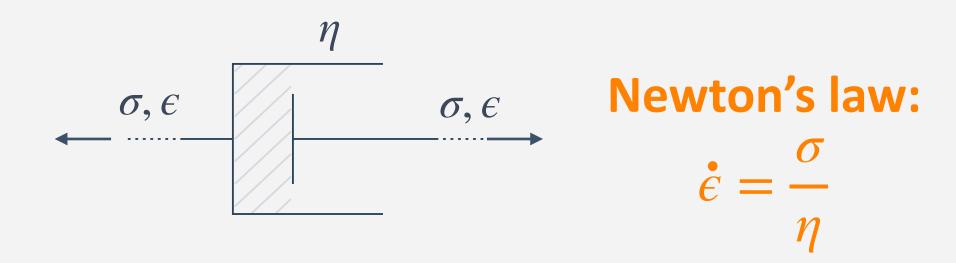
Simple Viscoelastic Models: Linear Combinations of Dashpots & Elastic Springs

elastic solids



$$\sigma = E\epsilon$$

viscous liquids

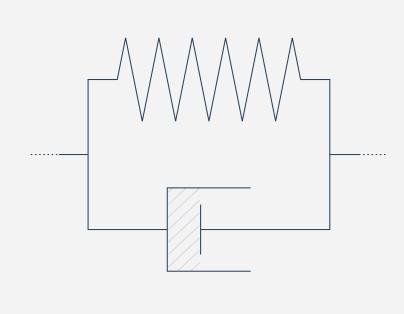


Maxwell model

$$\sigma = \sigma_1 = \sigma_2$$

$$\epsilon = \epsilon_1 + \epsilon_2$$

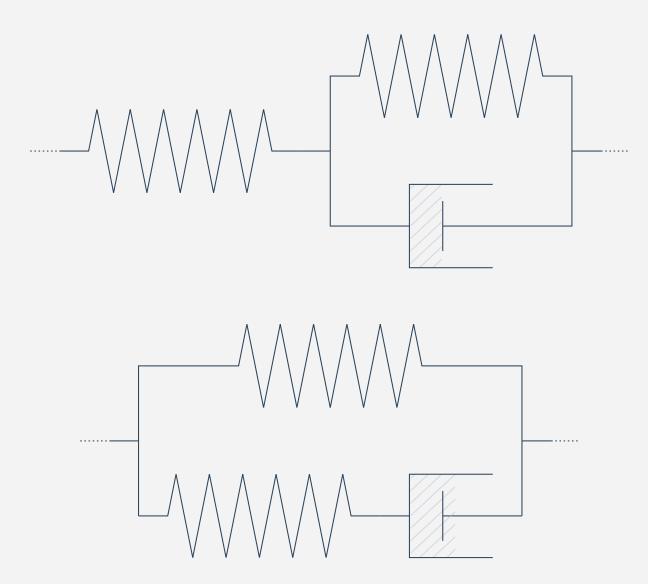
Voigt model



$$\sigma = \sigma_1 + \sigma_2$$

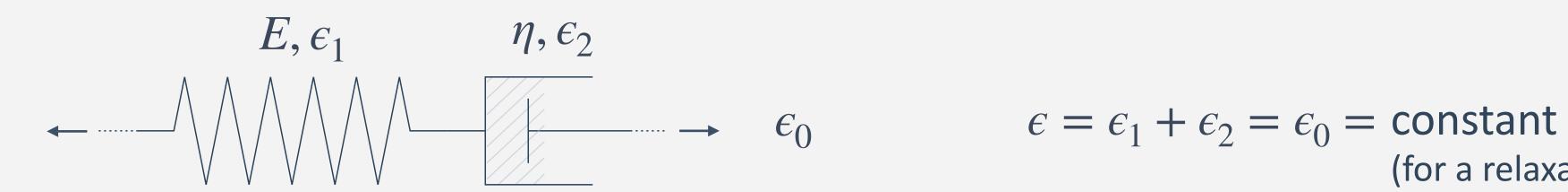
$$\epsilon = \epsilon_1 = \epsilon_2$$

Zener models (standard linear solid)



Maxwell Model

for a relaxation experiment using an elastic spring and dashpot combined in series:



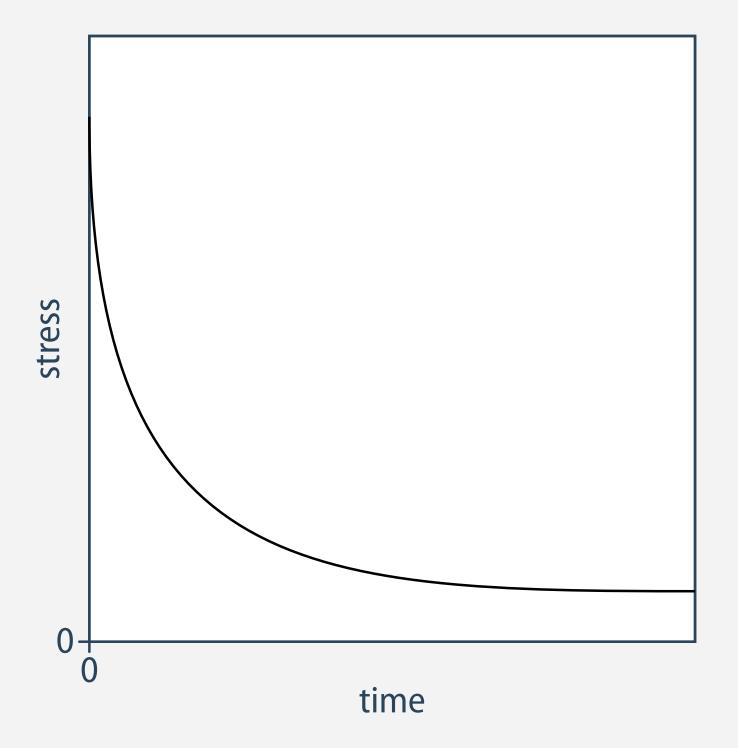
$$\epsilon = \epsilon_1 + \epsilon_2 = \epsilon_0 = {\rm constant} \label{epsilon}$$
 (for a relaxation experiment)

$$\frac{d\epsilon}{dt} = \frac{d\epsilon_1}{dt} + \frac{d\epsilon_2}{dt} = \frac{1}{E} \frac{d\sigma}{dt} + \frac{\sigma}{\eta} = 0$$

$$\frac{d\sigma}{\sigma} = -\frac{E}{\eta} dt \quad \to \quad [\ln(\sigma)]_{\sigma_0}^{\sigma} = -\frac{E}{\eta} [t']_0^t$$

$$\sigma = \sigma_0 e^{(-t/\tau)} \quad \text{with} \quad \tau = \frac{\eta}{E}$$

$$E(t) = \frac{\sigma}{\epsilon_0} = \frac{\sigma_0}{\epsilon_0} e^{(-t/\tau)} = E e^{(-t/\tau)}$$



ullet reasonable qualitative description of stress relaxation by the relaxation time au

Maxwell Behavior under Dynamic Deformation

• relaxation dynamics under sinusoidal deformation:

$$\epsilon^* = \epsilon_0 e^{(i\omega t)} \qquad \frac{d\epsilon^*}{dt} = i\omega \epsilon_0 e^{(i\omega t)}$$

• for the stress under continuous deformation follows:

$$\sigma^* = \int_{-\infty}^{t} E(t - t') \frac{d\epsilon^*}{dt'} dt' = \int_{-\infty}^{t} Ee^{-\frac{t - t'}{\tau}} \epsilon_0 i\omega e^{(i\omega t')} dt' \qquad \text{see Slide 238 and 239}$$

$$=\frac{Ei\omega\epsilon_{0}}{\frac{1}{\tau}+i\omega}\left[e^{(-\frac{t-t^{'}}{\tau}+i\omega t^{'})}\right]_{-\infty}^{t}=\frac{Ei\omega\epsilon_{0}}{\frac{1}{\tau}+i\omega}e^{i\omega t}=\frac{Ei\omega\epsilon_{0}(\frac{1}{\tau}-i\omega)}{\frac{1}{\tau^{2}}+\omega^{2}}e^{i\omega t}=\frac{Ei\epsilon_{0}(\omega\tau-i(\omega\tau)^{2})}{1+(\omega\tau)^{2}}e^{i\omega t}$$

the complex modulus and loss factor are then given by:

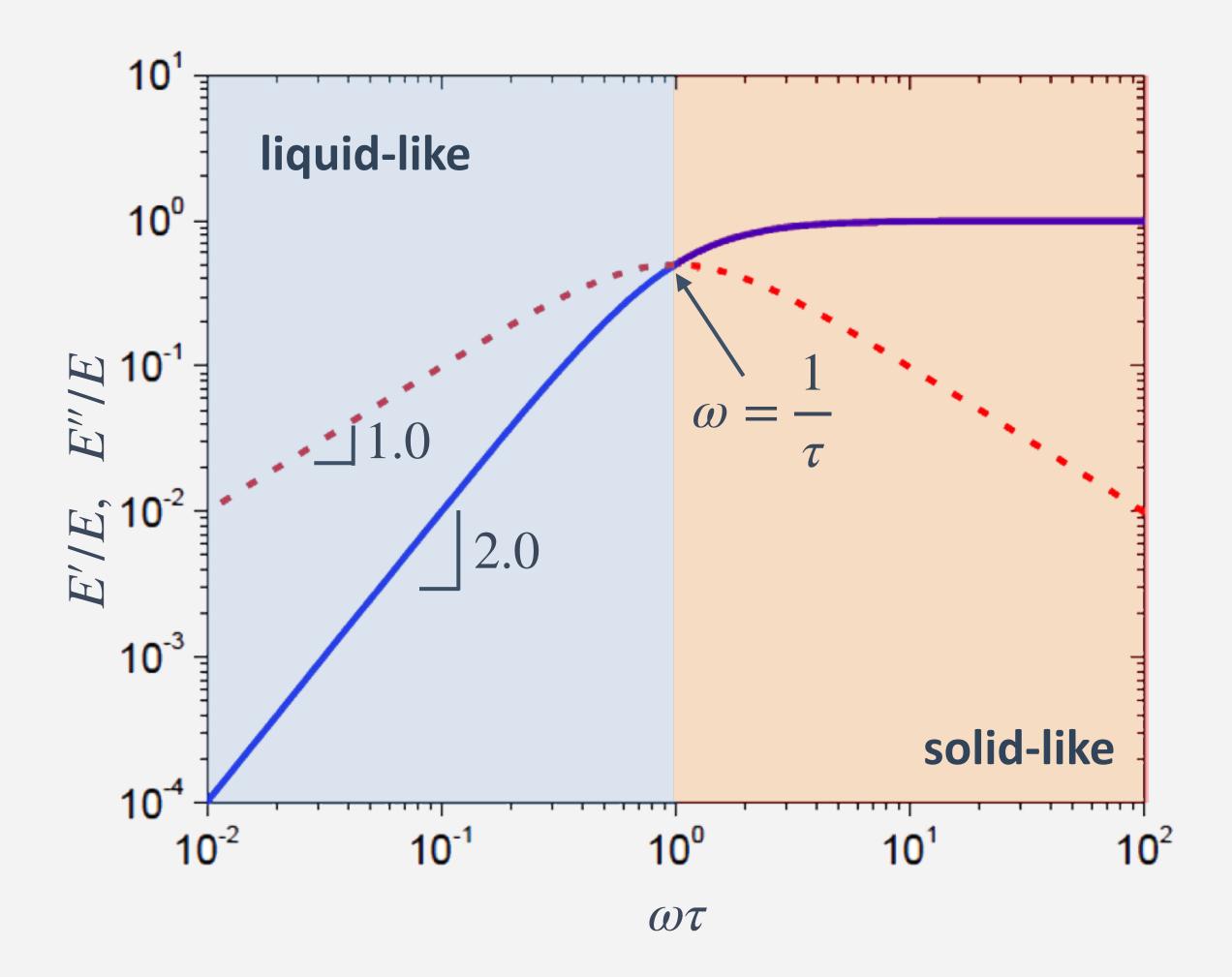
$$E^* = \frac{\sigma^*}{\epsilon^*} = \frac{Ei(\omega\tau - i(\omega\tau)^2)}{1 + (\omega\tau)^2} = \frac{E(\omega\tau)^2}{1 + (\omega\tau)^2} + \frac{iE\omega\tau}{1 + (\omega\tau)^2} = E' + iE'' \qquad tan(\delta) = \frac{E''}{E'} = \frac{1}{\omega\tau}$$

Modelling Rheology Curves

• for the complex modulus it follows:

$$= E^* = \frac{\sigma^*}{\epsilon^*} = \frac{Ei\omega}{\frac{1}{\tau} + i\omega}$$

$$= E' + iE'' = \frac{E(\omega\tau)^2}{1 + (\omega\tau)^2} + \frac{iE\omega\tau}{1 + (\omega\tau)^2}$$

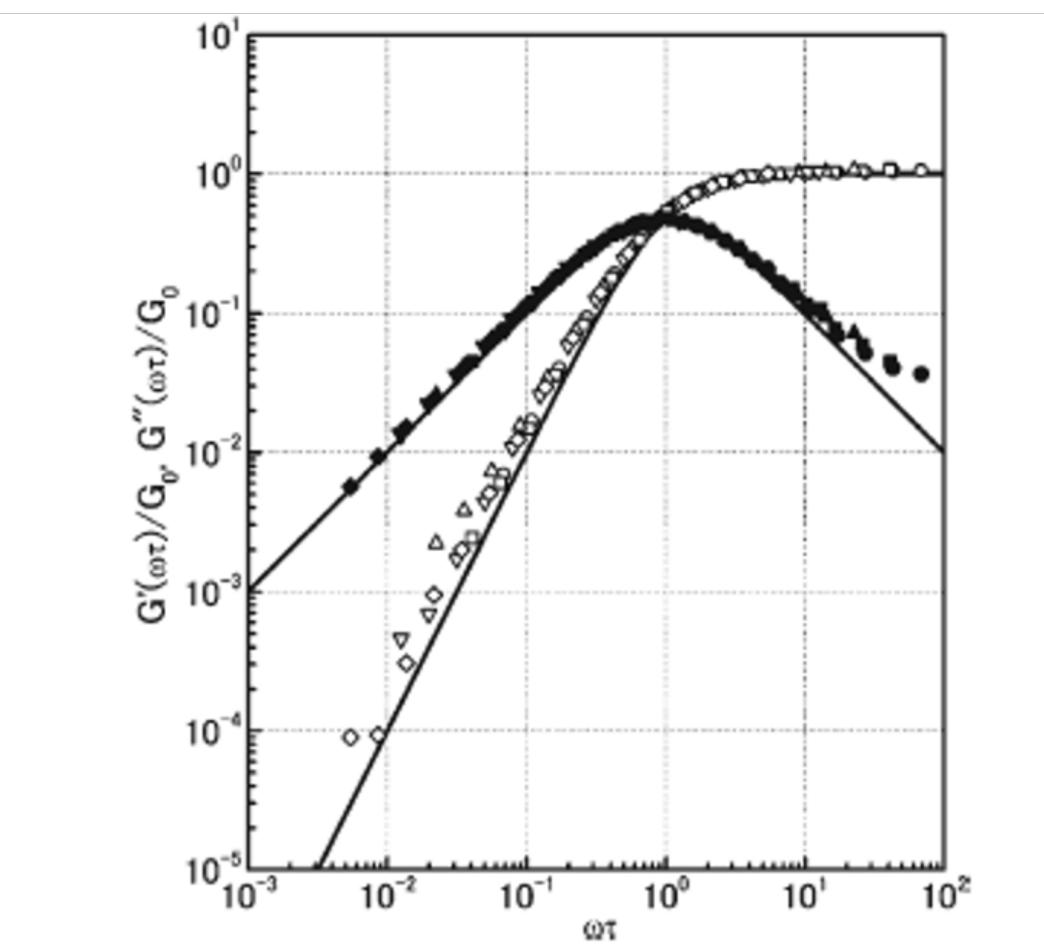


- the relaxation time characterizes the transition from liquid-like to solid-like behavior.
- ullet universal proportionality of E' and E'' to the frequency in the terminal regime ($\omega\ll au$)

Experimental Validation

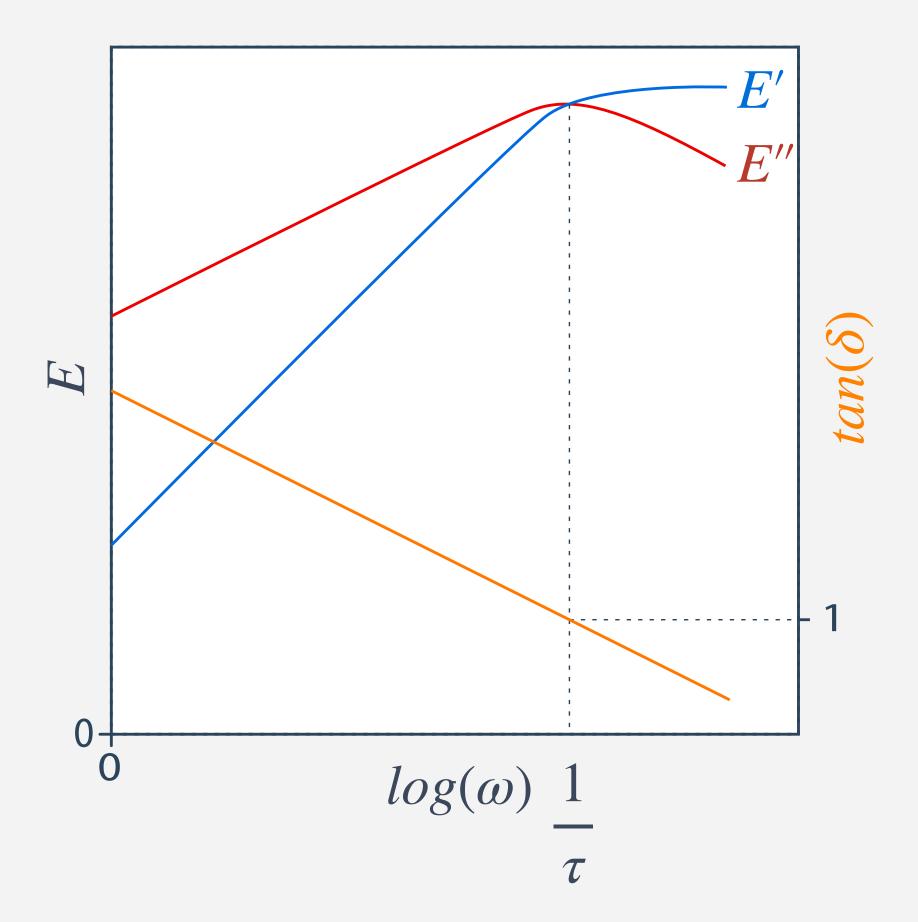
• Maxwell behavior is often encountered in temporary networks from small molecules (due to the formation of hydrogen-bonds, for example) with a single relaxation time.

$$R = \begin{pmatrix} \begin{pmatrix} & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix} & \begin{pmatrix} & & & & \\ & & \\ & & & \\ & & \end{pmatrix} & \begin{pmatrix} & & & \\ & & \\ & & & \\ & & & \end{pmatrix} & \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \end{pmatrix} & \begin{pmatrix} & & & & \\ & & & \\ & & & \end{pmatrix} & \begin{pmatrix} & & & & \\ & & & \\ & & & \end{pmatrix} & \begin{pmatrix} & & & & \\ & & & \\ & & & \end{pmatrix} & \begin{pmatrix} & & & & \\ & & & \\ & & & \end{pmatrix} & \begin{pmatrix} & & & & \\ & & & \\ & & & \end{pmatrix} & \begin{pmatrix} &$$

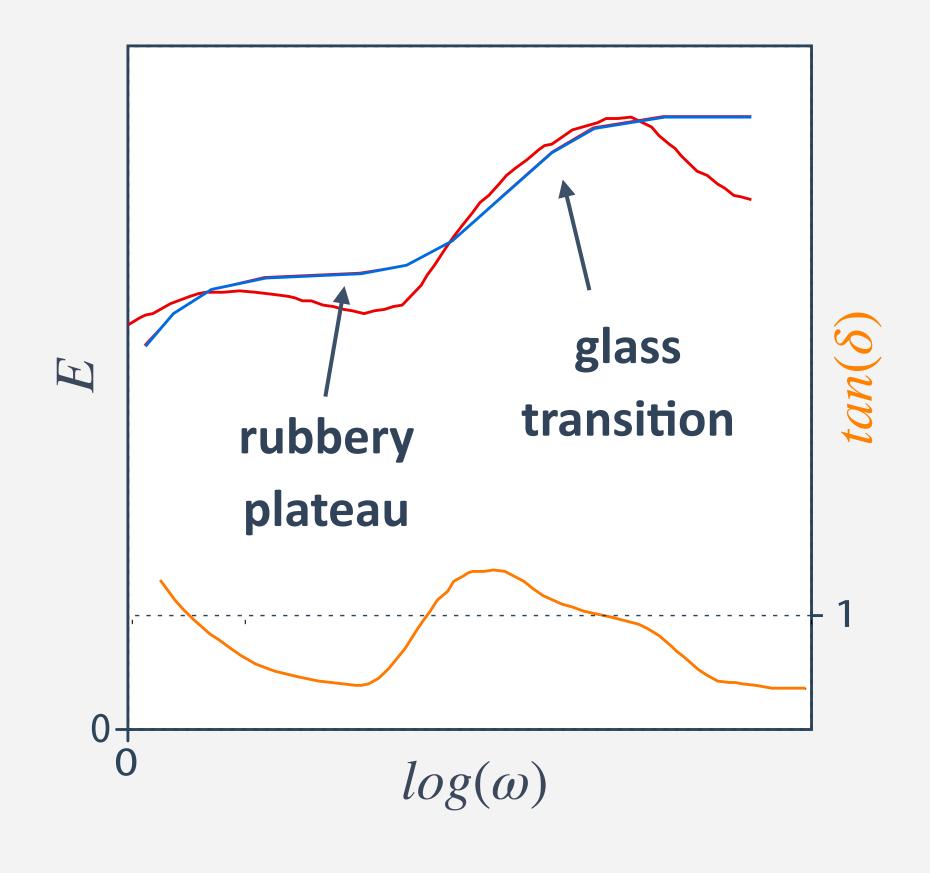


Limitations

Maxwell behavior

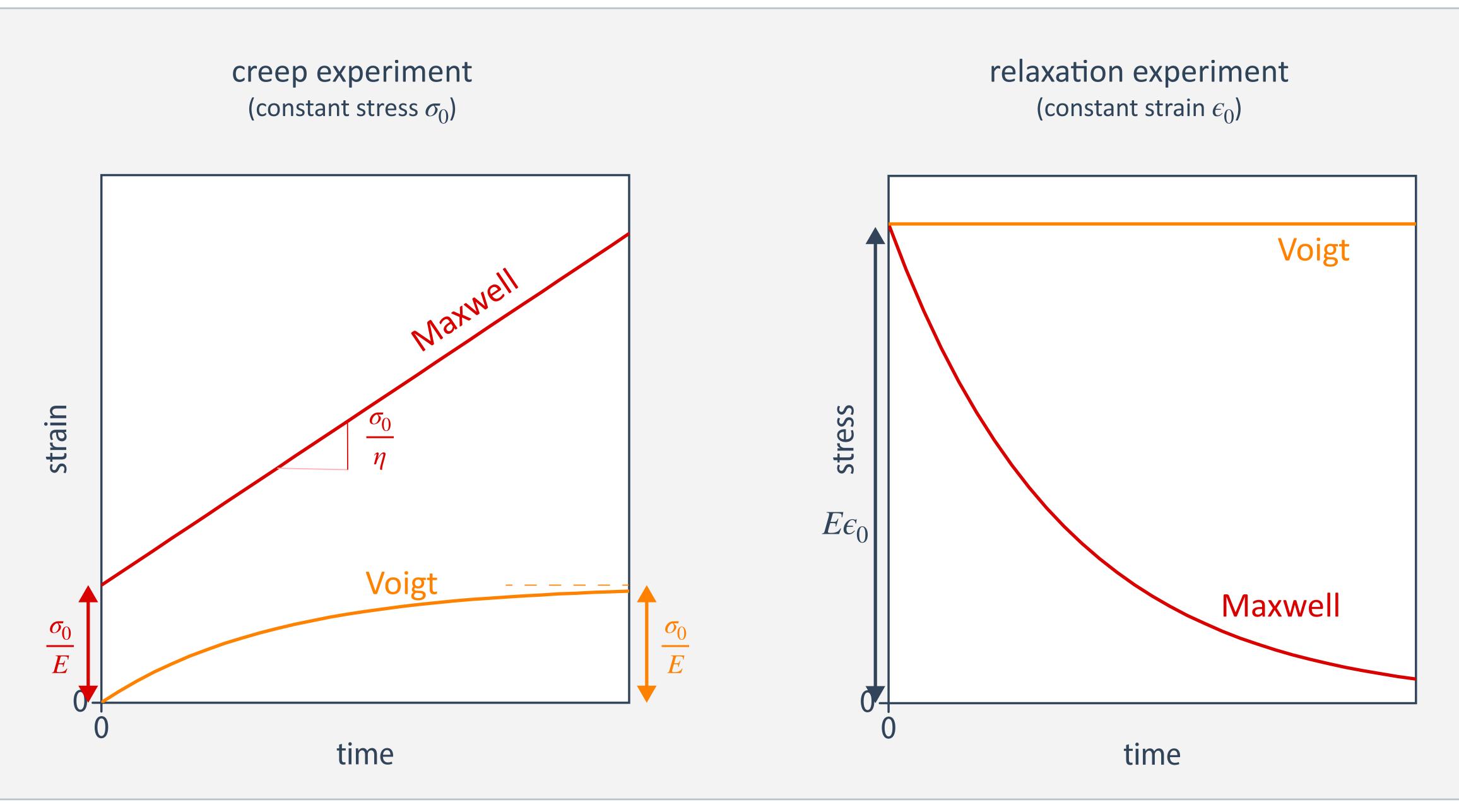


real polymers



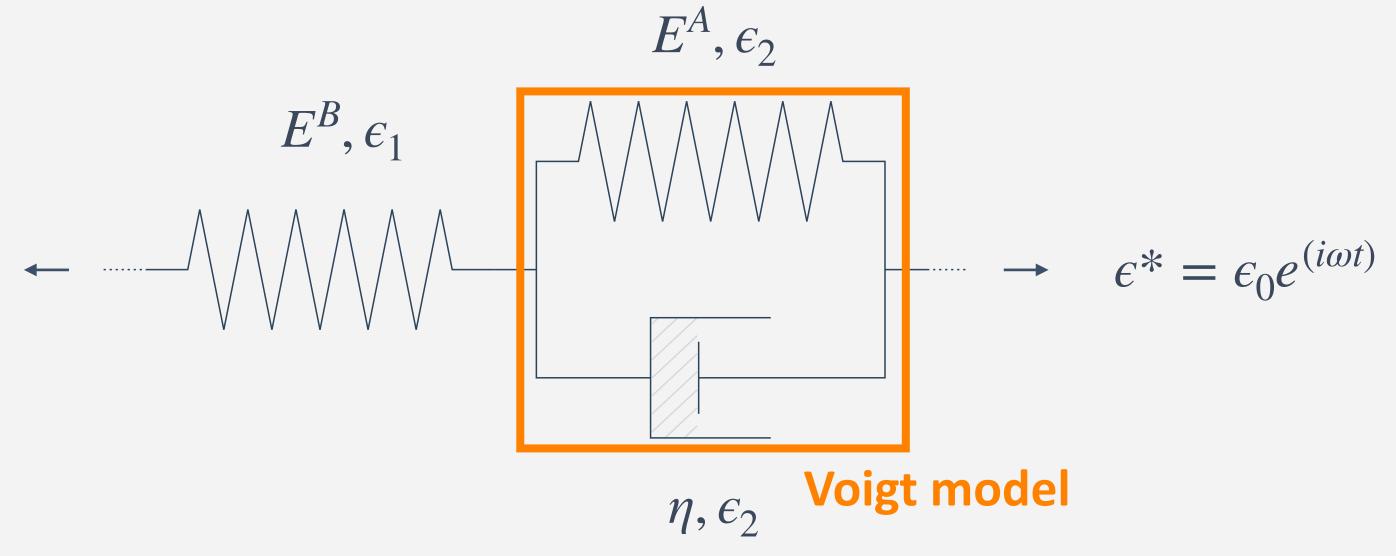
- the Maxwell model is too simple to account for the behaviour of real polymers
- this is also the case for the Voigt model (parallel arrangement of spring and dashpot) (see Exercise)

Maxwell vs. Voigt Model



Three Element models

• the Zener model:



• we use:

$$E_0 = E^B$$

$$E_{\infty} = \frac{E^A E^B}{E^A + E^B}$$

$$E_0 = E^B \qquad \qquad E_{\infty} = \frac{E^A E^B}{E^A + E^B} \qquad \qquad \tau_{\delta} = \frac{\eta(E_0 - E_{\infty})}{E_0^2}$$

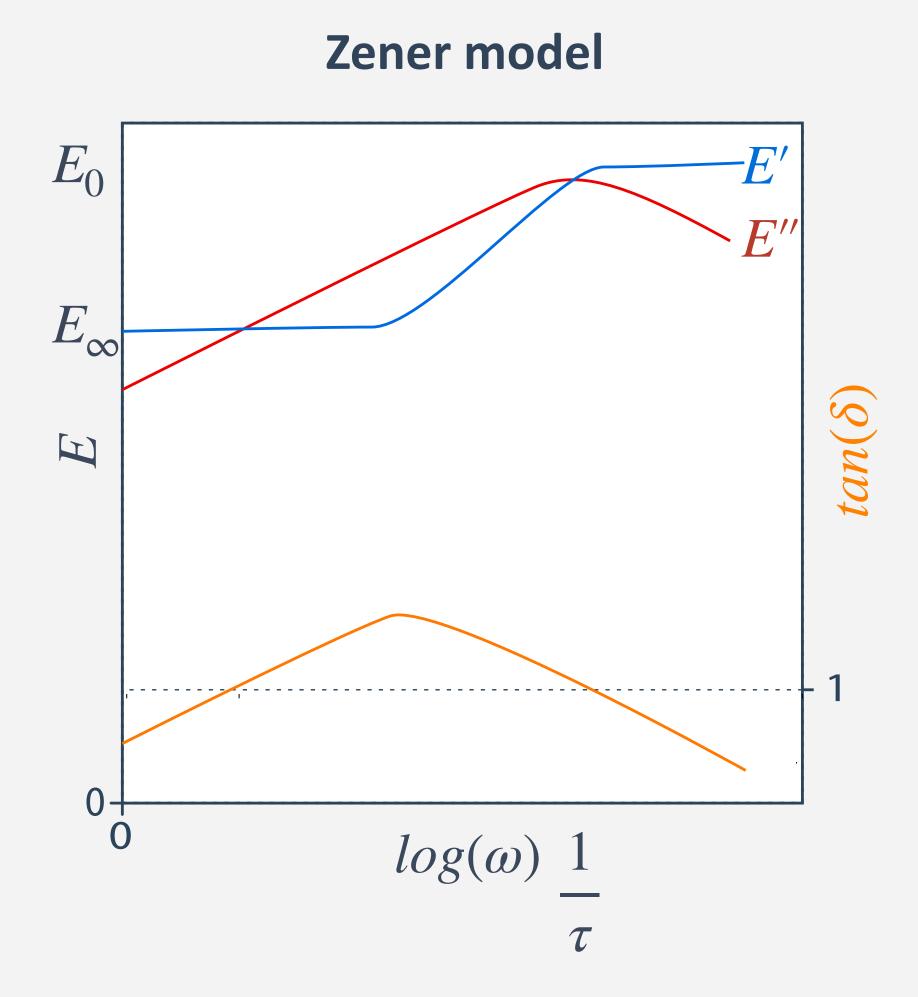
• after some calculations, we find:

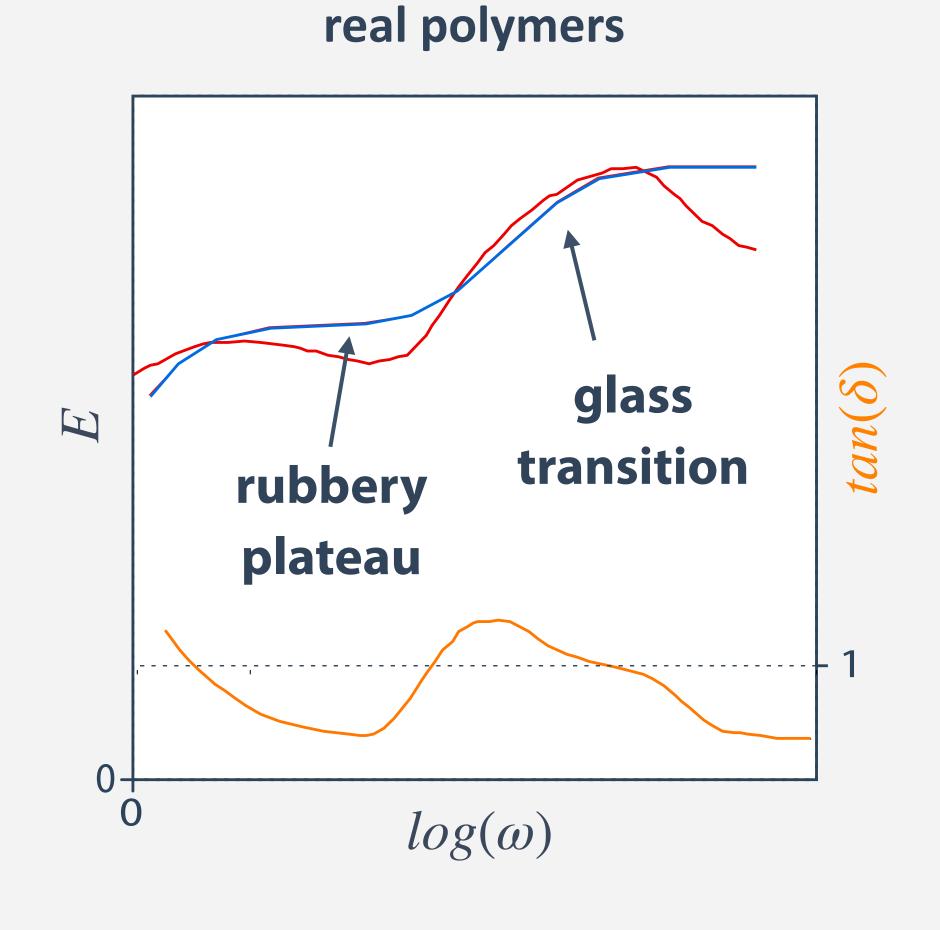
$$E' = E_0 - \frac{E_0 - E_\infty}{1 + (\omega \tau_\delta)^2}$$

$$E'' = \omega \tau_{\delta} \frac{E_0 - E_{\infty}}{1 + (\omega \tau_{\delta})^2}$$

$$tan(\delta) = \frac{\omega \tau_{\delta}(E_0 - E_{\infty})}{\sqrt{E_0 E_{\infty}} (1 + (\omega \tau_{\delta})^2)}$$

Basic Mechanical Behavior

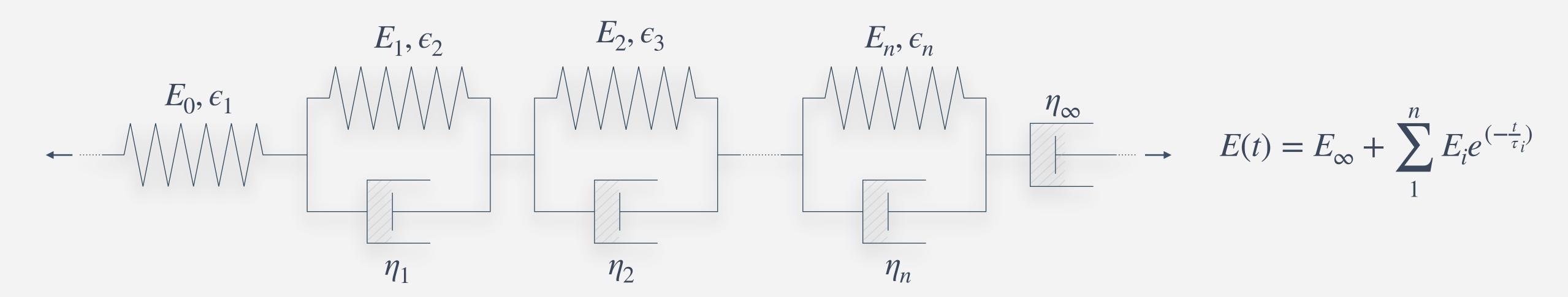




- ullet $E^{\prime\prime}$ always shows a peak at the glass transition.
- ullet E'tends towards E_0 for $\omega\ll 1/ au_\delta$ and takes the value of the Maxwell model for $E^A=0$

Generalised Voigt-Maxwell Model

• relaxation time distribution based on more accurate models from multiple elements:



• for continuous conditions, we get the relation to a relaxation time spectrum $H(\tau)$:

$$E(t) = E_{\infty} + \int_{-\infty}^{\infty} H(\tau)e^{-\frac{t}{\tau}}dln\tau$$

• Cole-Cole equation as another empirical equation:

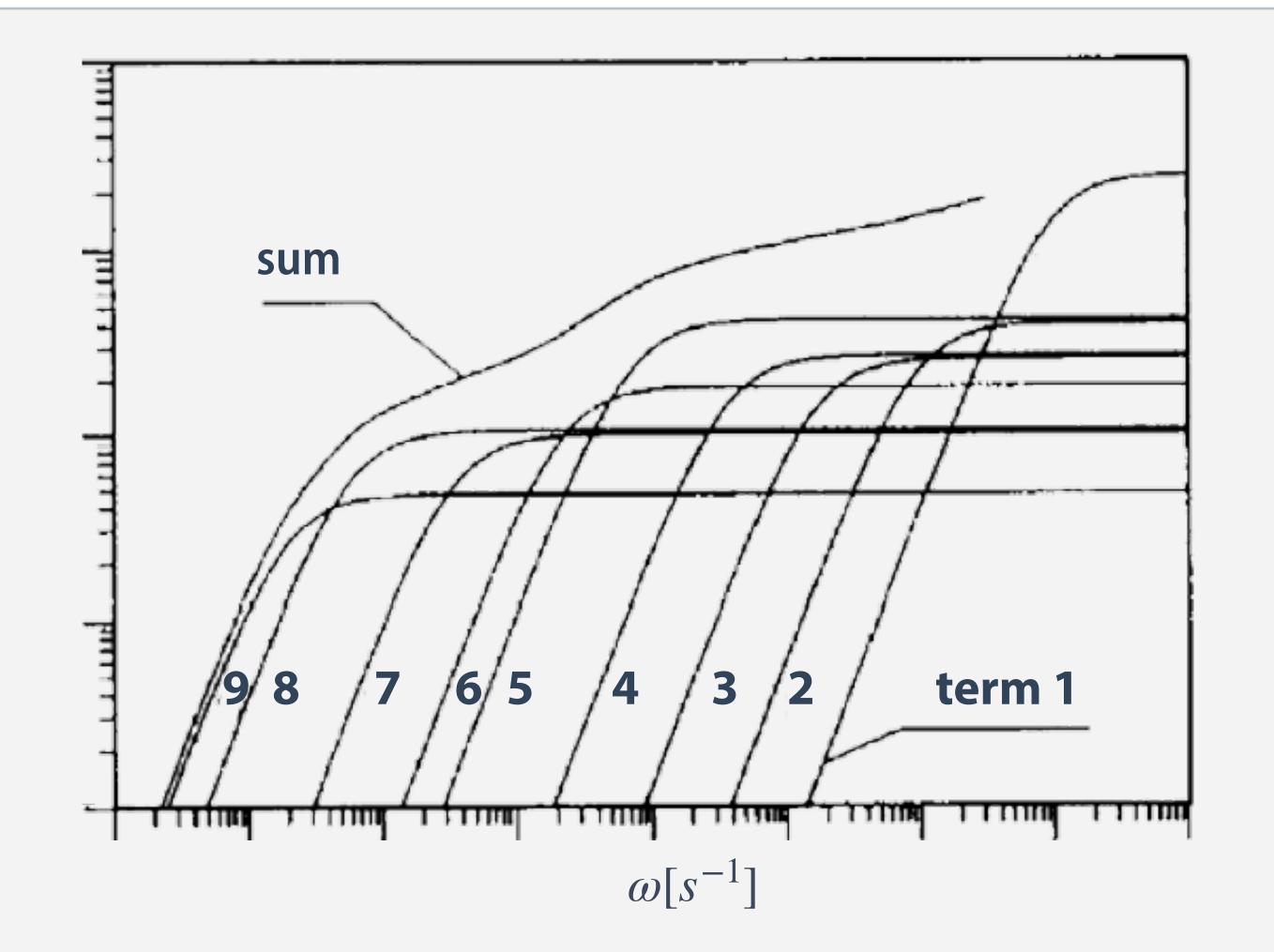
$$\frac{E^* - E_0}{E_\infty - E_0} = \frac{1}{e + (i\omega\tau)^\beta}$$

Generalised Voigt-Maxwell Model for Dynamic Behavior

$$G(t) = \sum_{i=1}^{N} G_i e^{-\frac{t}{\tau_i}}$$

$$G'(t) = \sum_{i=1}^{N} G_i \frac{(\omega \tau_i)^2}{1 + (\omega \tau_i)^2}$$

$$G''(t) = \sum_{i=1}^{N} G_i \frac{\omega \tau_i}{1 + (\omega \tau_i)^2}$$

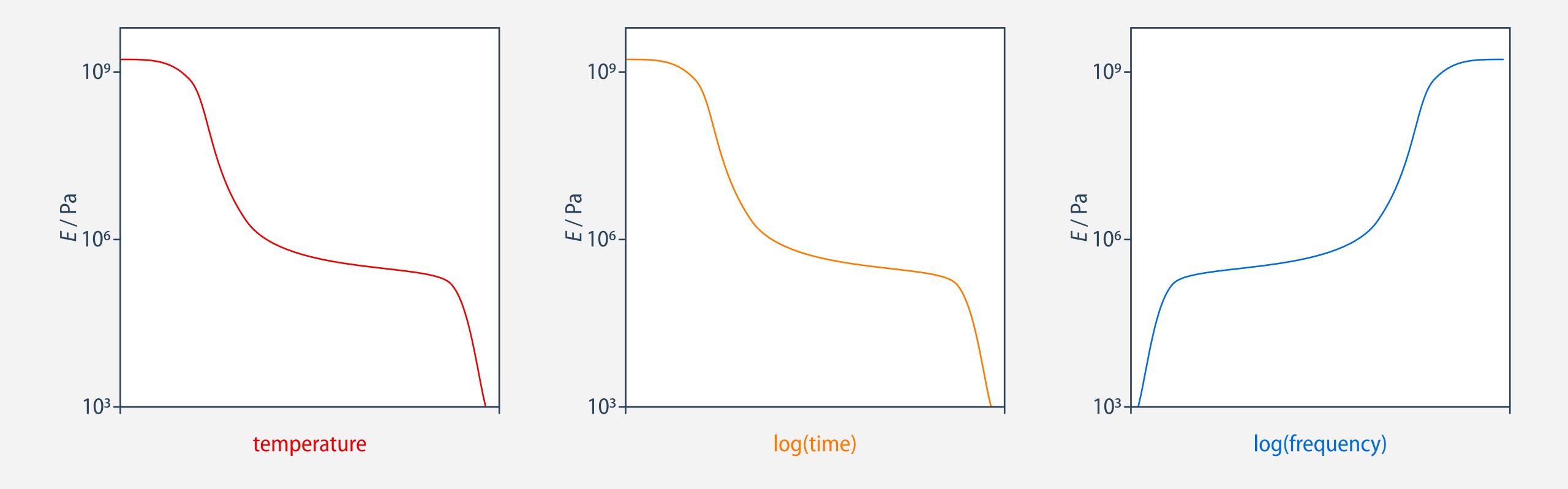


- at the lowest frequency, the behavior is dominated by the longest relaxation time
- ullet G_i and au are empirical parameters with often unclear physical interpretation

Time-Temperature Equivalence

Time-Temperature Equivalence

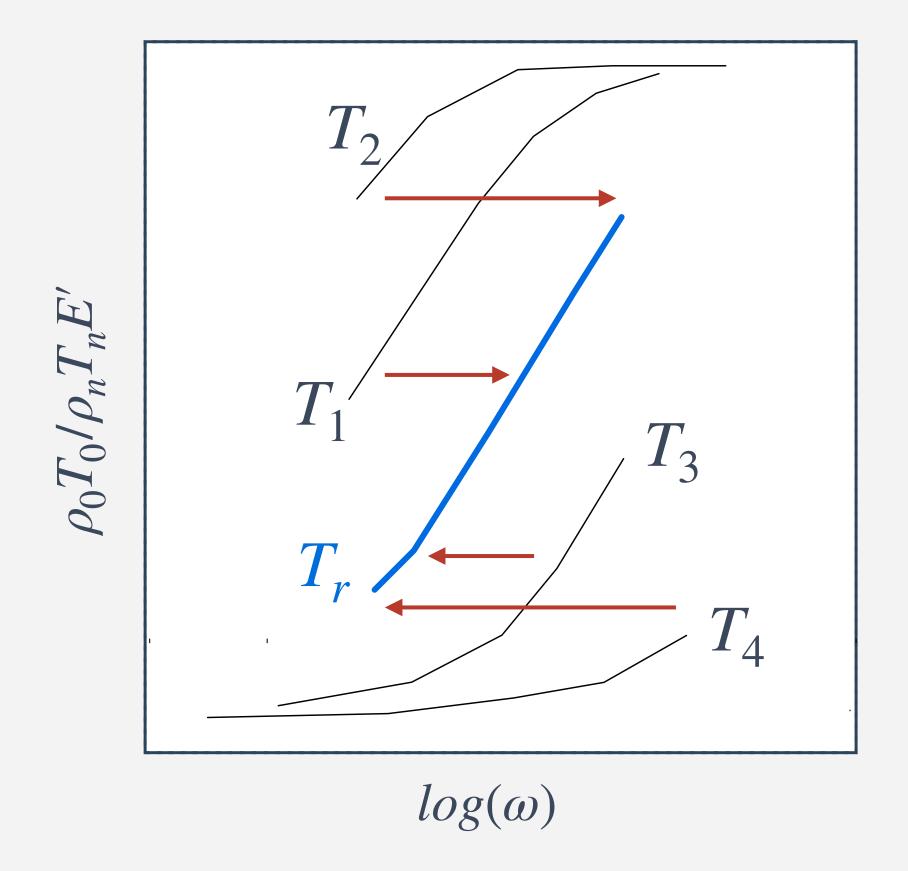
ullet qualitatively similar behavior of E, when temperature or time are increased, or frequency is decreased

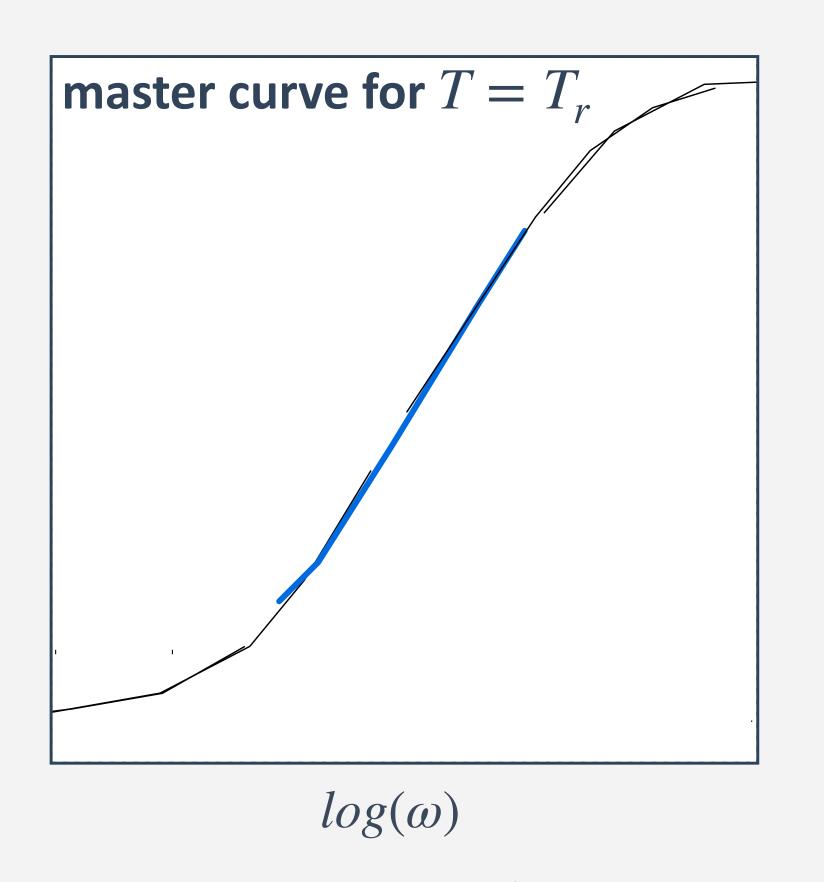


• is it possible to relate the time (or frequency) and temperature in a more concrete way?

Time-Temperature Superposition

ullet measurements of E' as function of frequency at several different temperatures

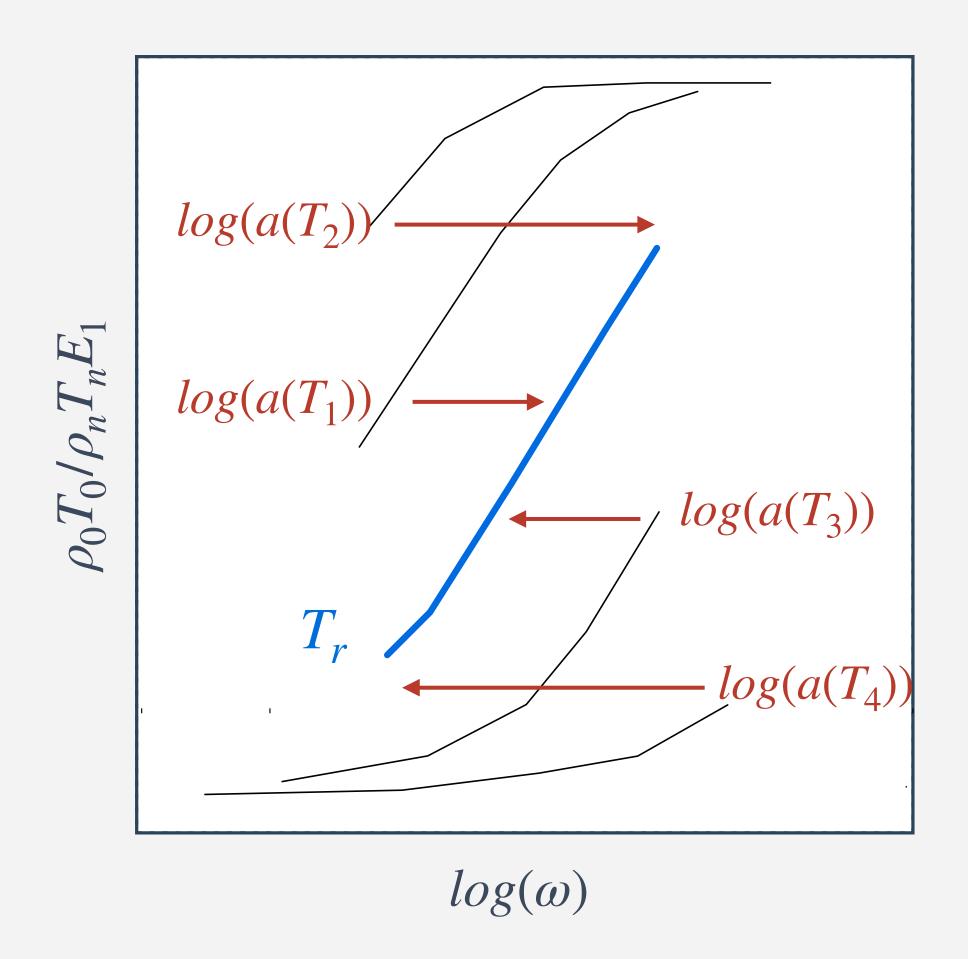




- ullet after correction for ho T, superimposed data by horizontal displacements along $log(\omega)$ axis
- this allows to cover the behavior at frequency ranges that are experimentally inaccessible

Williams-Landel-Ferry (WLF) Equation

• the displacement factors follow the empirical WLF equation:



$$log(a_T) = log(\omega_r) - log(\omega) = log\left(\frac{\omega_r}{\omega}\right)$$

$$\log(a_T) = -\frac{C_1(T - T_r)}{C_2 + T - T_r}$$

for
$$T_r = T_g$$
:

$$log(a_T) = -\frac{17.44(T - T_r)}{51.6 + T - T_r}$$

ullet using $T_{
m g}$ as the reference temperature, C_1 and C_2 adopt universal values

Interpretation by the Free Volume Theory

ullet assumption: one or more relaxation times at temperatures close to $T_{\rm g}$

• free Volume Theory:

$$\tau(T) = \tau_0 e^{\frac{v_0}{v_f}} = \tau_0 e^{\frac{\Delta \alpha^{-1}}{T - T_0}}$$
 see Slide 137

• let
$$T_0 = T_g - A$$
, $\tau(T) = \tau_0 e^{\frac{\Delta \alpha^{-1}}{A + T - T_g}}$, $\tau(T_g) = \tau_0 e^{\frac{\Delta \alpha^{-1}}{A}}$:

we saw:

$$a_T = \frac{\omega_{T_g}}{\omega(T)} = \frac{\tau(T)}{\tau(T_g)} \qquad lna_T = ln\tau(T) - ln\tau(T_g) = \frac{\Delta \alpha^{-1}}{A + T - T_g} - \frac{\Delta \alpha^{-1}}{A}$$

$$lna_{T} = -\frac{A^{-1}\Delta\alpha^{-1}(T - T_{g})}{A + T - T_{g}}$$

WLF equation:

compare with the WLF equation:
$$log(a_T) = -\frac{C_1(T-T_r)}{C_2+T-T_r}$$

Implications and Limitations of the WLF Equation

• the range of frequencies or time accessible by experiments is often limited and can be extended accessed using the WLF approach (very useful to predict creep behavior).

 \bullet restricted approximately to a temperature range $T_g < T < T_g + 50~K$

• often deviations from the "universal" constants

WLF does not apply to non-linear behavior (large deformations)

ullet justified only, if it is applicable to all experimental quantities at a time ($E', E'', tan(\delta)$)

Learning Outcome

 polymers are viscoelastic materials, their mechanical behaviour is highly sensitive to the timescale of the measurement.

• linear viscoelasticity may be applied when the deformations are small, allowing the application of simple models for the time dependent behaviour.

• time-temperature equivalence is a qualitative feature of the behaviour of polymeric materials. It is invoked to justify the practice of time-temperature superposition, which can be used to greatly extend the time or frequency range of measurements.